Skip to main content

Sea Ice Monitoring in the Arctic and Baltic Sea Using SAR

  • Chapter
Remote Sensing of the European Seas

Large regions of the Polar Oceans are covered by sea ice. The ice has a profound impact on the exchange of heat, momentum, and matter between the ocean and the atmosphere, on the solar albedo of the ocean, and on deep ocean circulation. Information about sea ice conditions are needed for ship navigation, fisheries, or oil and gazxs exploration, in geoand biophysical studies, and in climate research. In this chapter, methods of sea ice monitoring using synthetic aperture radar are addressed. The influence of sea ice properties such as surface roughness or volume structure on the observed radar signatures is explained, also considering environmental effects. We discuss advantages and limitations of different SAR configurations for sea ice observations. The use of SAR imagery for ice type discrimination is examined. The determination of other parameters such as ice drift, timing and length of the melt season, melt pond coverage, sea ice concentration, or extension of polynyas are briefly summarized. The usefulness of SAR data for validation and improvements of numerical models for simulating the dynamics of the sea ice cover is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askne J, Ulander LMH, Birkeland D (1994) Accuracy of ice concentration derived from ERS-1 SAR images during the late melt period in the Arctic. EARSeL Advances Rem Sens 3: 44-49

    Google Scholar 

  • Carlström A (1997) A microwave backscattering model for deformed first-year sea ice and comparisons with SAR data. IEEE Trans. Geoscience and Remote Sensing GRS-35: 378-391

    Google Scholar 

  • Carlström A, Ulander LMH (1995) Validation of backscatter models for level and deformed sea ice in ERS-1 SAR images. Int J Rem Sens 16: 3245-3266

    Article  Google Scholar 

  • Carsey FD (ed) (1992) Microwave remote sensing of sea ice. AGU Geophysical Monograph Series. American Geophysical Union, Washington

    Google Scholar 

  • Dammert PBG, Ulander LMH, Larsson B (1994) Radar signatures of sea ice and leads. In: Ulander LMH (ed) Baltic Experiment for ERS-1 (BEERS). National Maritime Administration, Norrköping, Sweden, pp 71-98

    Google Scholar 

  • Dierking W, Busche T (2006) Sea Ice Monitoring by L-Band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery. IEEE Trans Geosci Rem Sens 44: 957-970

    Article  Google Scholar 

  • Dierking W, Pettersson MI, Askne J (1999) Multifrequency of scatterometer measurements of Baltic Sea Ice during EMAC-95. Int J Rem Sens 20: 349-372

    Article  Google Scholar 

  • Dierking W, Skriver H. , Gudmandsen P. (2004) On the improvement of sea ice classification by means of radar polarimetry, Proceedings of the 23rd EARSeL Symposium, Remote Sensing in Transition, Ghent, Belgium, ed. By R. Goossens; Rotterdam: Millpress, pp 203-209

    Google Scholar 

  • Dokken ST, HÃ¥kansson B, Askne J (2000) Inter comparison of Arctic Sea ice concentration using Radarsat, ERS, SSM/I and in-situ data. Can J Rem Sens 26: 521-536

    Google Scholar 

  • Dokken ST, Winsor P, Markus T, Askne J, Björk G (2002) ERS SAR characterization of coastal polynyas in the Arctic with SSM/I and numerical model investigations. Rem Sens Environ 80: 321-335

    Article  Google Scholar 

  • Fetterer F, Gineris D, Kwok R (1994) Sea ice type maps from Alaska Synthetic Aperture Radar Facility imagery: An assessment. J Geophys Res 99: 22443-22458

    Article  Google Scholar 

  • Fily M, Rothrock DA (1987) Sea ice tracking by nested correlations. IEEE Trans Geosci Rem Sens GE-25: 570-580

    Google Scholar 

  • Hassol SJ (ed) (2004) Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Kwok R (1998) The RADARSAT Geophysical Processor System. In: Tsatsoulis C and Kwok R (ed) Analysis of SAR data of the Polar Oceans. Springer-Verlag, Berlin, pp 235-258

    Google Scholar 

  • Kwok R, Cunningham G, Nghiem S (2003) A study of the onset of melt over the Arctic Ocean in RADARSAT synthetic aperture radar. J Geophys Res 108: 3363-3376

    Article  Google Scholar 

  • Leppäranta M, Sun Y, Haapala J (1998) Comparisons of sea-ice velocity fields from ERS-1 SAR and a dynamic model. J Glaciology 44: 248-262

    Google Scholar 

  • Li S, Cheng Z, Weeks WF (1998) Extraction of intermediate scale sea ice deformation parameters from SAR ice motion products. In: Tsatsoulis C and Kwok R (ed) Analysis of SAR data of the Polar Oceans. Springer-Verlag, Berlin, pp 69-90

    Google Scholar 

  • Manninen AT (1996) Surface morphology and backscattering of ice-ridge sails in the Baltic Sea. J Glaciology 42: 141-156

    Google Scholar 

  • McConnell R, Kwok R, Curlander JC, Kober W, S. PS (1991) Ψ-S correlation and dynamic time warping: Two methods for tracking ice floes in SAR images. IEEE Trans Geosci Rem Sens 29: 1004-1012

    Article  Google Scholar 

  • Mäkynen M, Hallikainen M (2004) Investigation of C- and X-band backscatter signatures of Baltic Sea ice. Int J Rem Sens 25: 2061-2086

    Article  Google Scholar 

  • Onstott RG (1992) SAR and scatterometer signatures of sea ice. Chapter 5. In: Carsey FD (ed) Microwave remote sensing of sea ice. American Geophysical Union, Washington D.C., pp 73-104

    Google Scholar 

  • Onstott RG, Shuchman RA (2005) SAR measurements of sea ice. In: Jackson CR and Apel JR (ed) Synthetic aperture radar marine user’s manual. US Department of Commerce, 81-115

    Google Scholar 

  • Pettersson MI, Cavalieri DJ, Askne J (1996) SAR Observations of Arctic freeze-up as compared to SSM/I during ARCTIC-91. Int. J. of Remote Sensing 17: 2603-2624

    Article  Google Scholar 

  • Perovich DK, Tucker WB, Ligett KA (2002) Aerial observation of the evolution of ice surface conditions during summer. J. Geophy. Res. 107: 8048-8064

    Article  Google Scholar 

  • Stern HL, Moritz RE (2002) Sea ice kinematics and surface properties from RADARSAT SAR during the SHEBA drift. Journal of Geophysical Research (for the SHEBA Special Section) 107: 1-10

    Google Scholar 

  • Sun Y (1994) A new correlation technique for the ice motion analysis. EARSeL Advances of Remote Sensing 3: 57-63

    Google Scholar 

  • Sun Y (1996) Automatic ice motion retrieval from ERS-1 SAR images using the optical flow method. Int. J. Remote Sensing 17: 2059-2087

    Article  Google Scholar 

  • Tsatsoulis C, Kwok R (ed) (1998) Analysis of SAR data of the polar oceans: recent advances. Springer, Berlin

    Google Scholar 

  • Ulander LMH, Carlström A, Askne J (1995) Effect of frost flowers, rough saline snow and slush on the ERS-1 SAR backscatter of thin Arctic Sea ice. Int. J. of Remote Sensing 16: 3287-3306

    Article  Google Scholar 

  • Winebrenner DP, Bredow J, Fung AK, Drinkwater MD, Nghiem S, Gow AJ, Perovich DK, Grenfell TC, Han HC, Kong JA, Lee JK, Mudaliar S, Onstott RG, Tsang L, West RD (1992) Microwave sea ice signature modeling. Chapter 8. In: Carsey FD (ed) Microwave remote sensing of sea ice. American Geophysical Union, Washington D.C., pp 137-176

    Google Scholar 

  • Winebrenner DP, Long DG, Holt B (1998) Mapping the progression of melt onset and freeze-up on Arctic sea ice using SAR and scatterometry. In: Tsatsoulis C and Kwok R (ed) Analysis of SAR data of the Polar Oceans. Springer-Verlag, Berlin, Germany, pp 129-144

    Google Scholar 

  • Yackel JJ, Barber DG (2000) Melt ponds on sea ice in the Canadian archipelago 2. On the use of Radarsat-1 synthetic aperture radar for geophysical inversion. J. Geophys. Res. 105: 22061-22070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Askne, J., Dierking, W. (2008). Sea Ice Monitoring in the Arctic and Baltic Sea Using SAR. In: Barale, V., Gade, M. (eds) Remote Sensing of the European Seas. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6772-3_29

Download citation

Publish with us

Policies and ethics