Skip to main content

Laser Remote Sensing of the European Marine Environment: LIF Technology and Applications

  • Chapter

Laser remote sensing is an efficient, proven tool capable of providing quantitative, spatially-resolved, Real-Time data for chemical pollution, eutrophication, biomass, and hydrographic processes over large water surface areas with high spatial resolution; and is often the only solution for many environmental marine applications. Various types of Light Detection and Ranging systems (LIDAR) utilize Laser Induced Fluorescence (LIF) and light backscattering to analyze bodies of water remotely. LIDAR systems are installed as a payload on airborne, shipboard or stationary platforms for operational purposes and scientific research. This paper provides an overview of and references to LIF LIDAR technology, together with a brief insight to applications development in Europe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babichenko S, Poryvkina L, Arikese V, Kaitala S, Kuosa H (1993) Remote sensing of phytoplankton using laser induced fluorescence. Rem Sens Environ 45: 43-50

    Article  Google Scholar 

  • Babichenko S, Lapimaa J, Porovkina L, Varlamov V (1995) On-line fluorescent techniques for diagnostics of water environment. In: Russwurm GM (ed) Air Toxics and Water Monitoring, SPIE vol 2503, pp 157-161

    Google Scholar 

  • Babichenko S, Kaitala S, Leeben A, Poryvkina L, Seppälä J (1999) Phytoplankton pigments and Dissolved Organic Matter distribution in the Gulf of Riga. J Mar Systems 23: 69-82

    Article  Google Scholar 

  • Babichenko S, Dudelzak A, Lapimaa J, Lisin A, Poryvkina L, Vorobiev A (2006) Locating water pollution and shore discharges in coastal zone and inland waters with FLS lidar. In: EARSeL eProc 5: 32-41

    Google Scholar 

  • Barbini R, Colao F, Fantoni R, Frassanito C, Palucci A, Ribezzo S (2001) Range resolved lidar fluorosensor for marine investigations. In: EARSeL eProc 1: 185-195

    Google Scholar 

  • Bristow M, Bundy D, Edmonds CM, Ponto PE, Frey BE, Small LF (1985) Air-borne laser fluorosensor survey of the Colombia and Snake rivers: simultaneous measurements of chlorophyll, dissolved organics and optical attenuation. Int J Rem Sens 6: 1707-1734

    Article  Google Scholar 

  • Brown CE, Nelson R, Fingas MF, Mullin JV (1997) Airborne Laser Fluorosensing: Overflights During Lift Opeartions of a Sunken Oil Bargade. In: Proc of IV Thematic Conference Remote Sensing for Marine and Coastal Environments. Orlando, Florida, vol 1, pp 23-30

    Google Scholar 

  • Chekaljuk AM, Demidov AA, Fadeev VV, Gorbunov MYu (1995) Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe. EARSeL Adv Rem Sens 3: 131-139

    Google Scholar 

  • Determann S, Reuter R, and Willkomm R (1994) Fluorescent matter in the eastern Atlantic Ocean, Part 1: method of measurement and near surface distribution. Deep Sea Res 41: 659-675

    Article  Google Scholar 

  • Drozdowska V, Walczowski W, Hapter R, Stoń J, Irczuk M, Zieliński T, and Piskozub J (2004) Fluorescence characteristics of the upper water layer of the Arctic seas based on lidar, spectrophotometric and optical methods. In: EARSeL eProc 3: 136-142

    Google Scholar 

  • Dudelzak AE, Babichenko SM, Poryvkina LV, Saar KU (1991) Total luminescent spectroscopy for remote laser diagnostics of natural water conditions. Appl Opt 30: 453-458

    Article  Google Scholar 

  • Fantoni R, Barbini R, Colao F, Ferrante D, Fiorani L, and Palucci A (2004) Integration of two lidar fluorosensor payloads in submarine ROV and flying UAV platforms. In: EARSeL eProc 3: 45-53

    Google Scholar 

  • Fiorani L, Barbini R, Colao F, De Dominicis L, Fantoni R, Palucci A, and Artamonov ES (2004) Combination of lidar, MODIS and SeaWiFS sensors for simultaneous chlorophyll monitoring. In: EARSeL eProc. 3: 8-17

    Google Scholar 

  • Harsdorf S, Janssen M, Reuter R, Toeneboen S, Wachowicz B, Willkomm R (1999) Submarine lidar for seafloor inspection. Meas Sci Tech 10: 1178-1184

    Article  Google Scholar 

  • Hengstermann T and Reuter R (1990) Lidar fluorosensing of mineral oil spills on the sea surface. Appl Opt 29: 3218-3227

    Article  Google Scholar 

  • Hengstermann T, Loquay K, Reuter R, Wang H, and Willkomm R. (1992) A laser fluorosensor for airborne measurements of maritime pollution and of hydrographic parameters. EARSeL Adv Rem Sens 1: 85-98

    Google Scholar 

  • Hitomi K, Yamagishi S, Yamanouchi H, Yamaguchi Y (2002) Detection of Spilled Oil Using a Compact Fluorescence Lidar. J Visualization Society of Japan 22: 77-85

    Google Scholar 

  • Hoge FE, Swift RN (1980) Oil film thickness measurement using airborne laser induced Raman backscatter. Appl Opt 19: 3269-3281

    Article  Google Scholar 

  • Karpicz R, Dementjev A, Kuprionis Z, Pakalnis S, Westphal R, Reuter R, and Gulbinas V (2006) Oil spill fluorosensing lidar for inclined onshore or ship-board operation. Appl Opt 45: 6620-6625

    Article  Google Scholar 

  • Lennon M, Babichenko S, Thomas N, Mariette V, Mercier G, and Lisin A (2006) Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence. In: EARSeL eProc 5: 120-128

    Google Scholar 

  • Maslov DV, Fadeev VV, and Lyashenko AI (2001) A shore-based lidar for coastal seawater monitoring. In: EARSeL eProc 1: 46-52

    Google Scholar 

  • Ohm K, Reuter R, Stolze M, and Willkomm R (1998) Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters. In: EARSeL Yearbook 1997, Paris, pp 105-113

    Google Scholar 

  • Pantani L, Cecchi G, and Bazzani M (1995) Remote Sensing of Marine Environments with the High Spectral Resolution Fluorosensor, FLIDAR 3, SPIE, vol 2586, pp 56-64

    Article  Google Scholar 

  • Patsaeva S (1995) New Methodological aspects of the old problem. Laser Diagnostics of Dissolved Organic Matter. EARSeL Adv Rem Sens 3: 66-70

    Google Scholar 

  • Poryvkina LV, Babichenko SM, Lapimaa J (1992) Spectral variability of humus substance in marine ecosystems. AMBIO 21: 465-467

    Google Scholar 

  • Reuter R, Wang H, Willkomm R, Loquay K, Hengstermann T, Braun A (1995) A laser fluorosensor for maritime surveillance: Measurement of oil spills. EARSeL Adv Rem Sens 3: 152-169

    Google Scholar 

  • Robbe N, Zielinski O (2004) Airborne remote sensing of oil spills: analysis and fusion of multi-spectral near-range data. J Mar Sci Environ C2: 19-27

    Google Scholar 

  • Robbe N, Hengstermann T (2006) Remote Sensing of marine oil spills from air-borne platforms using multi-sensor systems. In: WIT Transactions on Ecology and the Environment, WIT Press, vol 95, pp 347-355

    Google Scholar 

  • Stute U, LeHaitre M, and Lado-Bordowsky O (2001) Aspects of spatial and temporal ranging for bistatic submarine lidar. In: EARSeL eProc 1: 96-105

    Google Scholar 

  • Zabavnikov V, Vasiliev A, Lisovsky A, Chernook V (2005) Use of airborne LIDAR for carrying out research in fisheries oceanography. In: 31st Int. Symposium ISRSE, St.-Petersburg, Russia, pp 201-202

    Google Scholar 

  • Zielinski O, Andrews R, Göbel J, Hanslik M, Hunsänger T, and Reuter R (2001) Operational Air-borne Hydrographic Laser Fluorosensing. In: EARSeL eProc 1: 53-60

    Google Scholar 

  • Zielinski O., Hengstermann T. & Robbe N. (2006) Detection of oil spills by air-borne sensors. In: Gade M, Hühnerfuss H, Korenowski GM (eds), Marine Surface Films, Springer, Berlin Heidelberg New York, pp 255-27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Babichenko, S. (2008). Laser Remote Sensing of the European Marine Environment: LIF Technology and Applications. In: Barale, V., Gade, M. (eds) Remote Sensing of the European Seas. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6772-3_15

Download citation

Publish with us

Policies and ethics