The Ins and Outs of Satellite Cell Myogenesis: The Role of the Ruling Growth Factors

  • Gabi Shefer
  • Zipora Yablonka-Reuveni
Part of the Advances in Muscle Research book series (ADMR, volume 3)

Keywords

Tyrosine Hydrocortisone Immobilization Oncol Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa J, Esko JD (1999) Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J Biol Chem 274(5):2690–2695PubMedCrossRefGoogle Scholar
  2. Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315PubMedCrossRefGoogle Scholar
  3. Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312PubMedCrossRefGoogle Scholar
  4. Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio PM et al (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation. J Cell Biol 137(5):1057–1068PubMedCrossRefGoogle Scholar
  5. Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Cell Biol 11(5):1859–1874Google Scholar
  6. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666PubMedCrossRefGoogle Scholar
  7. Armand AS, Launay T, Pariset C, Della Gaspera B, Charbonnier F, Chanoine C (2003) Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. Biochim Biophys Acta 1642(1–2):97–105PubMedGoogle Scholar
  8. Armand AS, Laziz I, Chanoine C (2006) FGF6 in myogenesis. Biochim Biophys Acta 1763(8):773–778PubMedCrossRefGoogle Scholar
  9. Armand AS, Pariset C, Laziz I, Launay T, Fiore F, Della Gaspera B et al (2005) FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol 204(1):297–308PubMedCrossRefGoogle Scholar
  10. Armelin HA (1973) Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci USA 70(9):2702–2706PubMedCrossRefGoogle Scholar
  11. Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP et al (2005) Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146(8):3547–3557PubMedCrossRefGoogle Scholar
  12. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647Google Scholar
  13. Beauchamp JR, Heslop L, Yu DSW, Tajbakhsh S, Kelly RG, Wernig A et al (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234PubMedCrossRefGoogle Scholar
  14. Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, MacNicol M, Peterson CA (2004) Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 3(6):353–361PubMedCrossRefGoogle Scholar
  15. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J et al., (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRefGoogle Scholar
  16. Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8(10):404–410PubMedCrossRefGoogle Scholar
  17. Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115(1):140–147PubMedCrossRefGoogle Scholar
  18. Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21(5 Suppl):S164–S172PubMedGoogle Scholar
  19. Bischoff R (1990) Control of satellite cell proliferation. Adv Exp Med Biol 280:147–157PubMedGoogle Scholar
  20. Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515PubMedCrossRefGoogle Scholar
  21. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14(1):167–196PubMedCrossRefGoogle Scholar
  22. Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore LA, Ahima RS et al (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421PubMedCrossRefGoogle Scholar
  23. Bogdanovich S, Perkins KJ, Krag TOB, Whittemore LA, Khurana TS (2005) Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 19(6):543–549PubMedCrossRefGoogle Scholar
  24. Booth FW (2006) The many flavors of IGF-I. J Appl Physiol 100(6):1755–1756PubMedCrossRefGoogle Scholar
  25. Botta M, Manetti F, Corelli F (2000) Fibroblast growth factors and their inhibitors. Curr Pharm Des 6:1897–1924PubMedCrossRefGoogle Scholar
  26. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804PubMedCrossRefGoogle Scholar
  27. Brandan E, Carey DJ, Larrain J, Melo F, Campos A (1996) Synthesis and processing of glypican during differentiation of skeletal muscle cells. Eur J Cell Biol 71(2):170–176PubMedGoogle Scholar
  28. Brandan E, Fuentes ME, Andrade W (1991) The proteoglycan decorin is synthesized and secreted by differentiated myotubes. Eur J Cell Biol 55(2):209–216PubMedGoogle Scholar
  29. Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16(5):525–532PubMedCrossRefGoogle Scholar
  30. Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58(1):575–602PubMedCrossRefGoogle Scholar
  31. Carlson BM, Dedkov EI, Borisov AB, Faulkner JA (2001) Skeletal muscle regeneration in very old rats. Journal of Gerontology. Series A, J Gerontol A Biol Sci Med Sci 56(5):B224–B233Google Scholar
  32. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277(2, Pt 2):R601-R606PubMedGoogle Scholar
  33. Carnac G, Ricaud S, Vernus B, Bonnieu A (2006) Myostatin: Biology and clinical relevance. Mini Rev Med Chem 6:765–770PubMedCrossRefGoogle Scholar
  34. Carrino DA (1998) Dynamic expression of proteoglycans during skeletal muscle development. Basic Appl Myology 8(2):95–106Google Scholar
  35. Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E (2004) Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117(1):73–84PubMedCrossRefGoogle Scholar
  36. Cavallaro U, Niedermeyer J, Fuxa M, Christofori G (2001) N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3(7):650–657PubMedCrossRefGoogle Scholar
  37. Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F et al (1999) Critical role played by Cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 19(7):5203–5217PubMedGoogle Scholar
  38. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823PubMedCrossRefGoogle Scholar
  39. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238PubMedCrossRefGoogle Scholar
  40. Cheifetz S, Andres JL, Massague J (1988) The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem 263(32):16984–16991PubMedGoogle Scholar
  41. Citores L, Khnykin D, Sorensen V, Wesche J, Klingenberg O, Wiedlocha A et al (2001) Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci 114(9):1677–1689PubMedGoogle Scholar
  42. Citores L, Wesche J, Kolpakova E, Olsnes S (1999) Uptake and Intracellular transport of acidic fibroblast growth factor: evidence for free and cytoskeleton-anchored fibroblast growth factor Receptors. Mol Biol Cell 10(11):3835–3848PubMedGoogle Scholar
  43. Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105(2):949–956PubMedCrossRefGoogle Scholar
  44. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301PubMedCrossRefGoogle Scholar
  45. Comoglio PM (1993) Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells. EXS 65:131–165PubMedGoogle Scholar
  46. Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4(3):407–410PubMedGoogle Scholar
  47. Cook DR, Doumit ME, Merkel RA (1993) Transforming growth factor-beta, basic fibroblast growth factor, and platelet-derived growth factor-BB interact to affect proliferation of clonally derived porcine satellite cells. J Cell Physiol 157(2):307–312PubMedCrossRefGoogle Scholar
  48. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311(5981):29–33PubMedCrossRefGoogle Scholar
  49. Cornelison DDW, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239(1):79–94PubMedCrossRefGoogle Scholar
  50. Cornelison DDW, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18(18):2231–2236PubMedCrossRefGoogle Scholar
  51. Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283PubMedCrossRefGoogle Scholar
  52. Coulier F, Pizette S, Ollendorff V, deLapeyriere O, Birnbaum D (1994) The human and mouse fibroblast growth factor 6 (FGF6) genes and their products: possible implication in muscle development. Prog Growth Factor Res 5(1):1–14PubMedCrossRefGoogle Scholar
  53. Coulier F, Pontarotti P, Roubin R, Hartung H, Goldfarb M, Birnbaum D (1997) Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J Mol Evol 44(1):43–56PubMedCrossRefGoogle Scholar
  54. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304(1):246–259PubMedCrossRefGoogle Scholar
  55. de Alvaro C, Martinez N, Rojas JM, Lorenzo M (2005) Sprouty-2 overexpression in C2C12 Cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 16(9):4454–4461PubMedCrossRefGoogle Scholar
  56. deLapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F et al (1993) Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 118(2):601–611PubMedGoogle Scholar
  57. De Falco G, Comes F, Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25(38):5244–5249PubMedCrossRefGoogle Scholar
  58. Desgranges P, Barbaud C, Caruelle JP, Barritault D, Gautron J (1999) A substituted dextran enhances muscle fiber survival and regeneration in ischemic and denervated rat EDL muscle. FASEB J 13(6):761–766PubMedGoogle Scholar
  59. DiMario JX (2002) Activation and repression of growth factor receptor gene transcription (Review). Int J Mol Med 10(1):65–71PubMedGoogle Scholar
  60. Dominique JE, Gerard C (2006) Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Exp Cell Res 312(13):2401–2414PubMedGoogle Scholar
  61. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor 1 precursor by human furin convertase. J Biol Chem 270(18):10618–10624PubMedCrossRefGoogle Scholar
  62. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149PubMedCrossRefGoogle Scholar
  63. Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease J Cell Mol Med 3:758–769CrossRefGoogle Scholar
  64. Feldman BJ, Streeper RS, Farese RVJ, Yamamoto KR (2006) Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings of the National Academy of Sciences of the United States of America 103(42):15675–15680PubMedCrossRefGoogle Scholar
  65. Feng S, Xu J, Wang F, Kan M, McKeehan WL (1996) Nuclear localization of a complex of fibroblast growth factor(FGF)-1 and an NH2-terminal fragment of FGF receptor isoforms R4 and R1alpha in human liver cells. Biochimica et Biophysica Acta 1310(1):67–73PubMedGoogle Scholar
  66. Fiore F, Sebille A, Birnbaum D (2000) Skeletal muscle regeneration is not impaired in Fgf6 -/- mutant mice. Biochem Biophys Res Commun 272(1):138–143PubMedCrossRefGoogle Scholar
  67. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17(5):481–517PubMedCrossRefGoogle Scholar
  68. Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051PubMedGoogle Scholar
  69. Funakoshi H, Nakamura T (2003) Hepatocyte growth factor: from diagnosis to clinical applications. Clin Chim Acta 327(1–2):1–23PubMedCrossRefGoogle Scholar
  70. Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402(1):39–51PubMedCrossRefGoogle Scholar
  71. Gao G, Goldfarb M (1995) Heparin can activate a receptor tyrosine kinase. EMBO J 14(10):2183–2190PubMedGoogle Scholar
  72. Garrett KL, Anderson JE (1995) Colocalization of bFGF and the myogenic regulatory gene myogenin in dystrophic mdx muscle precursors and young myotubes in vivo. Dev Biol 169(2):596–608PubMedCrossRefGoogle Scholar
  73. Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K et al (1998) Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 81(2):414–419Google Scholar
  74. Goldfarb M (1996) Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7(4):311–325PubMedCrossRefGoogle Scholar
  75. Gonzalez AM, Buscaglia M, Ong M, Baird A (1990) Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol 110(3):753–765PubMedCrossRefGoogle Scholar
  76. Gonzalez AM, Hill DJ, Logan A, Maher PA, Baird A (1996) Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 39(3):375–385PubMedCrossRefGoogle Scholar
  77. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S et al (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95(25):14938–14943PubMedCrossRefGoogle Scholar
  78. Gospodarowicz D (1974) Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249(453):123–127PubMedCrossRefGoogle Scholar
  79. Graves DC, Yablonka-Reuveni Z (2000) Vascular smooth muscle cells spontaneously adopt a skeletal muscle phenotype: a unique Myf5-/MyoD+ myogenic program. J Histochem Cytochem 48(9):1173–1194PubMedGoogle Scholar
  80. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B et al (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35(4):227–238PubMedCrossRefGoogle Scholar
  81. Grobet L, Royo Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J et al (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics 17(1):71–74PubMedCrossRefGoogle Scholar
  82. Grounds MD (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3(1–2):19–24PubMedCrossRefGoogle Scholar
  83. Grounds MD, Yablonka-Reuveni Z (1993) Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 3:210–256PubMedGoogle Scholar
  84. Groux-Muscatelli B, Bassaglia Y, Barritault D, Caruelle JP, Gautron J (1990) Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis. Dev Biol 142(2):380–385PubMedCrossRefGoogle Scholar
  85. Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 98(15):8578–8583PubMedCrossRefGoogle Scholar
  86. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ et al (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267(5200):1018–1021PubMedCrossRefGoogle Scholar
  87. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R et al (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231(3):489–502PubMedCrossRefGoogle Scholar
  88. Han JK, Martin GR (1993) Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage. Dev Biol 158(2):549–554PubMedCrossRefGoogle Scholar
  89. Hannon K, Kudla A, J., McAvoy MJ, Clase KL, Olwin BB (1996) Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J Cell Biol 132(6):1151–1159PubMedCrossRefGoogle Scholar
  90. Harmer NJ, Pellegrini L, Chirgadze D, Fernandez-Recio J, Blundell TL (2004) The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF Family and offers a structural basis for its unusual receptor affinity. Biochemistry 43(3):629–640PubMedCrossRefGoogle Scholar
  91. Hartley RS, Yablonka-Reuveni Z (1990) Long-term maintenance of primary myogenic cultures on a reconstituted basement membrane. In Vitro Cell Dev Biol 26(10):955–961PubMedCrossRefGoogle Scholar
  92. Hathaway MR, Hembree JR, Pampusch MS, Dayton WR (1991) Effect of transforming growth factor beta-1 on ovine satellite cell proliferation and fusion. J Cell Physiol 146(3):435–441PubMedCrossRefGoogle Scholar
  93. Hathaway MR, Pampusch MS, Hembree JR, Dayton WR (1994) Transforming growth factor beta-1 facilitates establishing clonal populations of ovine muscle satellite cells. J Anim Sci 72(8):2001–2007PubMedGoogle Scholar
  94. Haugsten EM, Sorensen V, Brech A, Olsnes S, Wesche J (2005) Different intracellular trafficking of FGF1 endocytosed by the four homologous FGF receptors. J Cell Sci 118(17):3869–3881PubMedCrossRefGoogle Scholar
  95. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  96. Hayashi S, Aso H, Watanabe K, Nara H, Rose MT, Ohwada S et al (2000) Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol 122(5):427–434CrossRefGoogle Scholar
  97. Higashio K, Shima N, Goto M, Itagaki Y, Nagao M, Yasuda H et al (1990) Identity of a tumor cytotoxic factor from human fibroblasts and hepatocyte growth factor. Biochem Biophys Res Commun 170(1):397–404PubMedCrossRefGoogle Scholar
  98. Hirai S, Matsumoto H, Hino N, Kawachi H, Matsui T, Yano H (2007) Myostatin inhibits differentiation of bovine preadipocyte. Domest Anim Endocrinol 32(1):1–14PubMedCrossRefGoogle Scholar
  99. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494PubMedCrossRefGoogle Scholar
  100. Israeli D, Benchaouir R, Ziaei S, Rameau P, Gruszczynski C, Peltekian E et al (2004) FGF6 mediated expansion of a resident subset of cells with SP phenotype in the C2C12 myogenic line. J Cell Physiol 201(3):409–419PubMedCrossRefGoogle Scholar
  101. Jennische E, Ekberg S, Matejka GL (1993) Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am J Physiol Cell Physiol 265(1):C122–C128Google Scholar
  102. Jenniskens GJ, Veerkamp JH, van Kuppevelt TH (2006) Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 206(2):283–294PubMedCrossRefGoogle Scholar
  103. Jespersen J, Kjaer M, Schjerling P (2006) The possible role of myostatin in skeletal muscle atrophy and cachexia. Scand J Med Sci Sports 16(2):74–82PubMedCrossRefGoogle Scholar
  104. Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE et al (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275(4, Pt 2):R1265–R1273PubMedGoogle Scholar
  105. Jin P, Farmer K, Ringertz NR, Sejersen T (1993) Proliferation and differentiation of human fetal myoblasts is regulated by PDGF-BB. Differentiation 54(1):47–54PubMedCrossRefGoogle Scholar
  106. Jin P, Sejersen T, Ringertz NR (1991) Recombinant platelet-derived growth factor-BB stimulates growth and inhibits differentiation of rat L6 myoblasts. J Biol Chem 266(2):1245–1249PubMedGoogle Scholar
  107. Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41PubMedGoogle Scholar
  108. Johnson SE, Allen RE (1995) Activation of skeletal muscle satellite cells and the role of fibroblast growth factor receptors. Exp Cell Res 219(2):449–453PubMedCrossRefGoogle Scholar
  109. Johnston CL, Cox HC, Gomm JJ, Coombes RC (1995) bFGF and aFGF induce membrane ruffling in breast cancer cells but not in normal breast epithelial cells: FGFR-4 involvement. Biochem J 306(Pt 2):609–616PubMedGoogle Scholar
  110. Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DDW, Fedorov YV et al (2005) The p38 alpha beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169(1):105–116PubMedCrossRefGoogle Scholar
  111. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275PubMedCrossRefGoogle Scholar
  112. Kambadur R, Sharma M, Smith TPL, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle. Genome Res 7(9):910–915PubMedGoogle Scholar
  113. Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 1999;274(22):15947–15952CrossRefGoogle Scholar
  114. Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V et al (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431(7007):466–471PubMedCrossRefGoogle Scholar
  115. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48(8):1079–1096PubMedGoogle Scholar
  116. Kiess M, Gill RM, Hamel PA (1995) Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene 10(1):159–166PubMedGoogle Scholar
  117. Kim HS, Liang L, Dean RG, Hausman DB, Hartzell DL, Baile CA (2001a) Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun 281(4):902–906CrossRefGoogle Scholar
  118. Kim I, Moon S, Yu K, Kim U, Koh GY (2001b) A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas. Biochim Biophys Acta 1518(1–2):152–156Google Scholar
  119. Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbe JC, Lamb N et al (1999) cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: Role in modulating MyoD half-life and myogenic activity. Mol Cell Biol 19(4):3167–3176PubMedGoogle Scholar
  120. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11(2):181–190PubMedCrossRefGoogle Scholar
  121. Klingenberg O, Wiedlocha A, Rapak A, Khnykin D, Citores L, Olsnes S (2000) Requirement for C-terminal end of fibroblast growth factor receptor 4 in translocation of acidic fibroblast growth factor to cytosol and nucleus. J Cell Sci 113(10):1827–1838PubMedGoogle Scholar
  122. Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133(4):601–610PubMedCrossRefGoogle Scholar
  123. Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC (2006) Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 26(16):6248–6260PubMedCrossRefGoogle Scholar
  124. Kontaridis MI, Liu X, Zhang L, Bennett AM (2002) Role of SHP-2 infibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol Cell Biol (11):3875–3891Google Scholar
  125. Korhonen J, Partanen J, Eerola E, Vainikka S, Alitalo R, Makela TP et al (1992) Five FGF receptors with distinct expression patterns. EXS 61:91–100PubMedGoogle Scholar
  126. Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K et al (2006) A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 18(11):1958–1966PubMedCrossRefGoogle Scholar
  127. Kudla AJ, Jones NC, Rosenthal RS, Arthur K, Clase KL, Olwin BB (1998) The FGF Receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J Cell Biol 142(1):241–250PubMedCrossRefGoogle Scholar
  128. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840PubMedCrossRefGoogle Scholar
  129. Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X (2007) Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol in pressGoogle Scholar
  130. Larrain J, Alvarez J, Hassell JR, Brandan E (1997a) Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation. Exp Cell Res 234(2):405–412CrossRefGoogle Scholar
  131. Larrain J, Cizmeci-Smith G, Troncoso V, Stahl RC, Carey DJ, Brandan E (1997b) Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J Biol Chem 272(29):18418–18424CrossRefGoogle Scholar
  132. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98(16):9306–9311PubMedCrossRefGoogle Scholar
  133. Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF et al (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23(30):5193–5202PubMedCrossRefGoogle Scholar
  134. Lefaucheur JP, Sebille A (1995) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 57(1–2):85–91PubMedCrossRefGoogle Scholar
  135. Leshem Y, Gitelman I, Ponzetto C, Halevy O (2002) Preferential binding of grb2 or phosphatidylinositol 3-kinase to the met receptor has opposite effects on hgf-induced myoblast proliferation. Exp Cell Res 274(2):288–298PubMedCrossRefGoogle Scholar
  136. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al (2004) Transforming growth factor-beta 1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: A key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019PubMedGoogle Scholar
  137. Li ZF, Shelton GD, Engvall E (2005) Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. Am J Pathol 166(2):491–497PubMedGoogle Scholar
  138. Lietha D, Chirgadze DY, Mulloy B, Blundell TL, Gherardi E (2001) Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J 20(20):5543–5555PubMedCrossRefGoogle Scholar
  139. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA (2002) Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 291(3):701–706PubMedCrossRefGoogle Scholar
  140. Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9(15):1595–1604PubMedGoogle Scholar
  141. Lyon M, Deakin JA, Gallagher JT (2002) The mode of action of heparan and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J Biol Chem 277(2):1040–1046PubMedCrossRefGoogle Scholar
  142. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT (1994) Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269(15):11216–11223PubMedGoogle Scholar
  143. Lyon M, Deakin JA, Rahmoune H, Fernig DG, Nakamura T, Gallagher JT (1998) Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate. J Biol Chem 273(1):271–278PubMedCrossRefGoogle Scholar
  144. Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134(2):529–536PubMedCrossRefGoogle Scholar
  145. Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C (2002) FGFR4 signaling is a necessary step in limb muscle differentiation. Development 129(19):4559–4569PubMedGoogle Scholar
  146. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178PubMedCrossRefGoogle Scholar
  147. Massague J, Blain SW, Lo RS (2000) TGF beta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309PubMedCrossRefGoogle Scholar
  148. Matsumoto K, Nakamura T (1997) Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 239(3):639–644PubMedCrossRefGoogle Scholar
  149. Mauro A (1961) Satellite cells of skeletal muscle fibres. J Biophys Biochem 9:493–495CrossRefGoogle Scholar
  150. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147PubMedCrossRefGoogle Scholar
  151. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L et al (2005) Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 118(15):3531–3541PubMedCrossRefGoogle Scholar
  152. McFarland DC, Gilkerson KK, Pesall JE, Wellenreiter RH, Ferrin NH, Ye WV et al (1997) Comparison of growth factor receptors and metabolic characteristics of satellite cells derived from the biceps femoris and pectoralis major muscles of the turkey. Gen Comp Endocrinol 105(1):114–120PubMedCrossRefGoogle Scholar
  153. McFarland DC, Liu X, Velleman SG, Zeng C, Coy CS, Pesall JE (2003) Variation in fibroblast growth factor response and heparan sulfate proteoglycan production in satellite cell populations. Comparative Biochemistry and Physiology Part C: Toxicol Pharmacol 134(3):341–351CrossRefGoogle Scholar
  154. McFarland DC, Velleman SG, Pesall JE, Liu C (2006) Effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Comp Biochem Physiol A Mol Integr Physiol 144(4):501–508PubMedCrossRefGoogle Scholar
  155. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90PubMedCrossRefGoogle Scholar
  156. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94(23):12457–12461PubMedCrossRefGoogle Scholar
  157. McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest;109(5):595–601PubMedCrossRefGoogle Scholar
  158. Meddahi A, Bree F, Papy-Garcia D, Gautron J, Barritault D, Caruelle JP (2002) Pharmacological studies of RGTA(11), a heparan sulfate mimetic polymer, efficient on muscle regeneration. J Biomed Mater Res 62(4):525–531PubMedCrossRefGoogle Scholar
  159. Melo F, Carey DJ, Brandan E (1996) Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J Cell Biochem 1996;62(2):227–239CrossRefGoogle Scholar
  160. Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181PubMedGoogle Scholar
  161. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126(20):4465–4475PubMedGoogle Scholar
  162. Miura T, Kishioka Y, Wakamatsu J, Hattori A, Hennebry A, Berry CJ et al (2006) Decorin binds myostatin and modulates its activity to muscle cells. Biochem Biophys Res Commun 340(2):675–680PubMedCrossRefGoogle Scholar
  163. Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83(7):1125–1136PubMedCrossRefGoogle Scholar
  164. Morley JE, Thomas DR, Wilson MMG (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83(4):735–743PubMedGoogle Scholar
  165. Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26(10):535–542PubMedCrossRefGoogle Scholar
  166. Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501PubMedCrossRefGoogle Scholar
  167. Nagata Y, Partridge TA, Matsuda R, Zammit PS (2006) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol 174(2):245–253PubMedCrossRefGoogle Scholar
  168. Naka D, Ishii T, Yoshiyama Y, Miyazawa K, Hara H, Hishida T et al (1992) Activation of hepatocyte growth factor by proteolytic conversion of a single chain form to a heterodimer. J Biol Chem 267(28):20114–20119PubMedGoogle Scholar
  169. Nakamura T, Nawa K, Ichihara A (1984) Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122(3):1450–1459PubMedCrossRefGoogle Scholar
  170. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A et al (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443PubMedCrossRefGoogle Scholar
  171. Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA 83(17):6489–6493PubMedCrossRefGoogle Scholar
  172. Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK et al (1991) Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6(4):501–504PubMedGoogle Scholar
  173. Neuhaus P, Oustanina S, Loch T, Kruger M, Bober E, Dono R et al (2003) Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biochem 23(17):6037–6048CrossRefGoogle Scholar
  174. Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M et al (2002) A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 293(1):247–251PubMedCrossRefGoogle Scholar
  175. Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB (1999) pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9(9):449–459PubMedCrossRefGoogle Scholar
  176. Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B et al (1994) Role of FGFs in skeletal muscle and limb development. Mol Reprod Dev 39(1):90–100PubMedCrossRefGoogle Scholar
  177. Olwin BB, Hall ZW (1985) Developmental regulation of laminin accumulation in the extracellular matrix of a mouse muscle cell line. Dev Biol 112(2):359–367PubMedCrossRefGoogle Scholar
  178. Olwin BB, Rapraeger A (1992) Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 118(3):631–639PubMedCrossRefGoogle Scholar
  179. Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I (2001) Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America 98(11):6074–6079PubMedCrossRefGoogle Scholar
  180. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays 22(2):108–112PubMedCrossRefGoogle Scholar
  181. Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16(2):205–213PubMedCrossRefGoogle Scholar
  182. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biology 2(3):reviews3005.1–3005.12Google Scholar
  183. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F et al (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271(25):15292–15297PubMedCrossRefGoogle Scholar
  184. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12(1):240–247PubMedGoogle Scholar
  185. Osses N, Brandan E (2002) ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Cell Physiol 282(2):C383–394PubMedGoogle Scholar
  186. Ostbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen O (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268(20):5249–5257PubMedCrossRefGoogle Scholar
  187. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004;23(16):3430–3439CrossRefGoogle Scholar
  188. Parsons SA, Millay DP, Sargent MA, McNally EM, Molkentin JD (2006) Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. Am J Pathol 168(6):1975–1985PubMedCrossRefGoogle Scholar
  189. Patel K, Amthor H (2005) The function of Myostatin and strategies of Myostatin blockade–new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord 15(2):117–126PubMedCrossRefGoogle Scholar
  190. Pavlath GK, Thaloor D, Rando TA, Cheong M, English AW, Zheng B (1998) Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn 212(4):495–508PubMedCrossRefGoogle Scholar
  191. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807):1029–1034PubMedCrossRefGoogle Scholar
  192. Perona R (2006) Cell signalling: growth factors and tyrosine kinase receptors. Clin Translational Oncol 8(2):77–82CrossRefGoogle Scholar
  193. Perry RLS, Parker MH, Rudnicki MA (2001) Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8(2):291–301PubMedCrossRefGoogle Scholar
  194. Pizette S, Coulier F, Birnbaum D, deLapeyriere O (1996) FGF6 modulates the expression of fibroblast growth factor receptors and myogenic genes in muscle cells. Exp Cell Res 224(1):143–151PubMedCrossRefGoogle Scholar
  195. Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101(4):413–424PubMedCrossRefGoogle Scholar
  196. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77(2):261–271PubMedCrossRefGoogle Scholar
  197. Popovici C, Roubin R, Coulier F, Birnbaum D (2005) An evolutionary history of the FGF superfamily. BioEssays 27(8):849–857PubMedCrossRefGoogle Scholar
  198. Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GEO et al (2001) Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8(4):885–897PubMedCrossRefGoogle Scholar
  199. Quinn LS, Steinmetz B, Maas A, Ong L, Kaleko M (1994) Type-1 insulin-like growth factor receptor overexpression produces dual effects on myoblast proliferation and differentiation. J Cell Physiol 159(3):387–398PubMedCrossRefGoogle Scholar
  200. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287PubMedCrossRefGoogle Scholar
  201. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252(5013):1705–1708PubMedCrossRefGoogle Scholar
  202. Reich A, Sapir A, Shilo B (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126(18):4139–4147PubMedGoogle Scholar
  203. Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152(6):1307–1312PubMedCrossRefGoogle Scholar
  204. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A et al (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285(4):E876–E888PubMedGoogle Scholar
  205. Rescan PY (1998) Identification of a fibroblast growth factor 6 (FGF6) gene in a non-mammalian vertebrate: continuous expression of FGF6 accompanies muscle fiber hyperplasia. Biochim Biophys Acta 1443(3):305–314PubMedGoogle Scholar
  206. Rios R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280(2):561–566PubMedCrossRefGoogle Scholar
  207. Riquelme C, Larrain J, Schonherr E, Henriquez JP, Kresse H, Brandan E (2001) Antisense inhibition of decorin expression in myoblasts decreases cell responsiveness to transforming growth factor beta and accelerates skeletal muscle differentiation. J Biol Chem 276(5):3589–3596PubMedCrossRefGoogle Scholar
  208. Roghani M, Mansukhani A, Dell’Era P, Bellosta P, Basilico C, Rifkin DB et al (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J BiolChem 269(6):3976–3984Google Scholar
  209. Rosenthal SM, Cheng Z (1995) Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci USA 92(22):10307–10311PubMedCrossRefGoogle Scholar
  210. Sachs M, Brohmann H, Zechner D, Muller TS, Hulsken J, Walther I et al (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150(6):1375–1384PubMedCrossRefGoogle Scholar
  211. Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T (2000) Postnatal profiles of myogenic regulatory factors and the receptors of TGF-beta 2, LIF and IGF-I in the gastrocnemius and rectus femoris muscles of dy mouse. Acta Neuropathol 99(2):169–176PubMedCrossRefGoogle Scholar
  212. Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N et al (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28(3):365–372PubMedCrossRefGoogle Scholar
  213. Scata KA, Bernard DW, Fox J, Swain JL (1999) FGF receptor availability regulates skeletal myogenesis. Exp Cell Res 250(1):10–21PubMedCrossRefGoogle Scholar
  214. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W (2000) Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149(7):1419–1432PubMedCrossRefGoogle Scholar
  215. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Engl J Med 350(26):2682–2688PubMedCrossRefGoogle Scholar
  216. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786PubMedCrossRefGoogle Scholar
  217. Shaoul E, Reich-Slotky R, Berman B, Ron D (1995) Fibroblast growth factor receptors display both common and distinct signaling pathways. Oncogene 10(8):1553–1561PubMedGoogle Scholar
  218. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Dev Biol 294(1):50–66PubMedCrossRefGoogle Scholar
  219. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404PubMedCrossRefGoogle Scholar
  220. Shefer G, Yablonka-Reuveni Z (2007) Reflections on lineage potential of skeletal muscle satellite cells: Do they sometimes go MAD? Crit Rev Eukaryot Gene Expr. 17(1):13–29PubMedGoogle Scholar
  221. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRefGoogle Scholar
  222. Shim K, Minowada G, Coling DE, Martin GR (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8(4):553–564PubMedCrossRefGoogle Scholar
  223. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873PubMedCrossRefGoogle Scholar
  224. Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P et al (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 2001;271(2):171–182Google Scholar
  225. Smith TH, Block NE, Rhodes SJ, Konieczny SF, Miller JB (1993) A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells. Development 117(3):1125–1133PubMedGoogle Scholar
  226. Smith TH, Kachinsky AM, Miller JB (1994) Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 127(1):95–105PubMedCrossRefGoogle Scholar
  227. Song A, Wang Q, Goebl MG, Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18(9):4994–4999PubMedGoogle Scholar
  228. Sorokin A, Mohammadi M, Huang J, Schlessinger J (1994) Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J Biol Chem 269(25):17056–17061PubMedGoogle Scholar
  229. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH (1996) Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses. EMBO J 15(22):6231–6240PubMedGoogle Scholar
  230. Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ et al (2002) The myostatin gene is a downstream target gene of basic Helix-Loop-Helix transcription factor MyoD. Mol Cell Biochem 22(20):7066–7082CrossRefGoogle Scholar
  231. Stark KL, McMahon JA, McMahon AP (1991) FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113(2):641–651PubMedGoogle Scholar
  232. Stauber DJ, DiGabriele AD, Hendrickson WA (2000) Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 97(1):49–54PubMedCrossRefGoogle Scholar
  233. Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133(2):405–416PubMedCrossRefGoogle Scholar
  234. Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327(6119):239–242PubMedCrossRefGoogle Scholar
  235. Strack AM, Myers RW (2004) Modulation of metabolic syndrome by fibroblast growth factor 19 (FGF19)? Endocrinology 145(6):2591–2593PubMedCrossRefGoogle Scholar
  236. Suzuki J, Yamazaki Y, Li G, Kaziro Y, Koide H (2000) Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol Cell Biol 20(13):4658–4665PubMedCrossRefGoogle Scholar
  237. Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K et al (2002) Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 292(3):709–714PubMedCrossRefGoogle Scholar
  238. Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytology 185:45–106Google Scholar
  239. Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132(12):2685–2695PubMedCrossRefGoogle Scholar
  240. Tartakoff AM (1994) Signal transduction through growth factor receptors. Nagoya: Elsevier Science and TechnologyGoogle Scholar
  241. Tashiro K, Hagiya M, Nishizawa T, Seki T, Shimonishi M, Shimizu S et al (1990) Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci USA 87(8):3200–3204PubMedCrossRefGoogle Scholar
  242. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128PubMedCrossRefGoogle Scholar
  243. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of ph and nitric oxide. Mol Biol Cell 13(8):2909–2918PubMedCrossRefGoogle Scholar
  244. Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S et al (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–1494PubMedCrossRefGoogle Scholar
  245. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114PubMedCrossRefGoogle Scholar
  246. Templeton TJ, Hauschka SD (1992) FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol 154(1):169–181PubMedCrossRefGoogle Scholar
  247. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass JJ et al (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243PubMedCrossRefGoogle Scholar
  248. Tortorella LL, Milasincic DJ, Pilch PF (2001) Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J Biol Chem 276(17):13709–13717PubMedGoogle Scholar
  249. Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science STKE 2004(228):pe17Google Scholar
  250. Uruno T, Oki J, Ozawa K, Miyakawa K, Ueno H, Imamura T (1999) Distinct regulation of myoblast differentiation by intracellular and extracellular fibroblast growth factor-1. Growth Factors 17(2):93–113PubMedGoogle Scholar
  251. Vainikka S, Joukov V, Klint P, Alitalo K (1996) Association of a 85-kDa Serine Kinase with Activated Fibroblast Growth Factor Receptor-4. J Biol Chem 271(3):1270–1273PubMedCrossRefGoogle Scholar
  252. Vainikka S, Joukov V, Wennstrom S, Bergman M, Pelicci PG, Alitalo K (1994) Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1. J Biol Chem 269(28):18320–18326PubMedGoogle Scholar
  253. Velleman SG (2000) The role of the extracellular matrix in skeletal development. Poult Sci 79(7):985–989PubMedGoogle Scholar
  254. Velleman SG, Liu C, Coy CS, McFarland DC (2006) Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness. Dev Growth Differ 48(4):271–276PubMedCrossRefGoogle Scholar
  255. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature Med 12(6):642–649PubMedCrossRefGoogle Scholar
  256. Volonte D, Liu Y, Galbiati F (2004) The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J 19(2):237–239PubMedGoogle Scholar
  257. Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci USA 102(7):2519–2524PubMedCrossRefGoogle Scholar
  258. Wagner KR, McPherron AC, Winik N, Lee SJ (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann of Neurol 52(6):832–836CrossRefGoogle Scholar
  259. Wagner KR (2005) Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 17(6):720–724PubMedCrossRefGoogle Scholar
  260. Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273(5273):359–361PubMedCrossRefGoogle Scholar
  261. Wang JK, Gao G, Goldfarb M (1994) Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol 14(1):181–188PubMedGoogle Scholar
  262. Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14(1):103–110PubMedGoogle Scholar
  263. Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H et al (1991) Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88(16):7001–7005PubMedCrossRefGoogle Scholar
  264. Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18):3615–3623PubMedGoogle Scholar
  265. Wickert L, Abiaka M, Bolkenius U, Gressner AM (2004) Corticosteroids stimulate selectively transforming growth factor (TGF)-[beta] receptor type III expression in transdifferentiating hepatic stellate cells. J Hepatol 40(1):69–76PubMedCrossRefGoogle Scholar
  266. Wilkie RS, O’Neill IE, Butterwith SC, Duclos MJ, Goddard C (1995) Regulation of chick muscle satellite cells by fibroblast growth factors: interaction with insulin-like growth factor-I and heparin. Growth Regul 5(1):18–27PubMedGoogle Scholar
  267. Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways. Muscle Nerve 31(3):283–300PubMedCrossRefGoogle Scholar
  268. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370(6488):341–347PubMedCrossRefGoogle Scholar
  269. Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL (2004) Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 269(1):264–275PubMedCrossRefGoogle Scholar
  270. Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF (2002) Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol Cell Biol 22(17):6199–6208PubMedCrossRefGoogle Scholar
  271. Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A et al (1999) FGF-19, a novel fibroblast growth factor with unique specificity for fgfr4. Cytokine 11(10):729–735PubMedCrossRefGoogle Scholar
  272. Xu X, Weinstein M, Li C, Deng C-X (1999) Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res 296(1):33–43PubMedCrossRefGoogle Scholar
  273. Yablonka-Reuveni Z (2007) Myostatin blockade: a new way to enhance skeletal muscle repair in old age? Mol Ther 15(8):1407–1409Google Scholar
  274. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (Mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235(1):203–212Google Scholar
  275. Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF (1990) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol 111(4):1623–1629PubMedCrossRefGoogle Scholar
  276. Yablonka-Reuveni Z, Day K, Vine A, Shefer G (2007) Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci [Epub ahead of print; Sept 18, 2007]Google Scholar
  277. Yablonka-Reuveni Z, Quinn LS, Nameroff M (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol 119(1):252–259PubMedCrossRefGoogle Scholar
  278. Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164(2):588–603PubMedCrossRefGoogle Scholar
  279. Yablonka-Reuveni Z, Rivera AJ (1997a) Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors 15(1):1–27CrossRefGoogle Scholar
  280. Yablonka-Reuveni Z, Rivera AJ (1997b) Proliferative dynamics and the role of FGF2 during myogenesis of rat satellite cells on isolated fibers. Basic Appl Myology 7(3&4):189–202Google Scholar
  281. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999a) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210(2):440–455CrossRefGoogle Scholar
  282. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999b) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47(1):23–42Google Scholar
  283. Yablonka-Reuveni Z, Seifert RA (1993) Proliferation of chicken myoblasts is regulated by specific isoforms of platelet-derived growth factor: Evidence for differences between myoblasts from mid and late stages of embryogenesis. Dev Biol 156(2):307–318PubMedCrossRefGoogle Scholar
  284. Yablonka-Reuveni Z (2004) Isolation and culture of myogenic stem cells. In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaillie C, et al., (eds) Handbook of Stem Cells – Vol 2: Adult and Fetal Stem Cells. San Diego: Elsevier – Academic Press, pp. 571–580Google Scholar
  285. Yaffe D, Saxel O (1977) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7(3):159–166PubMedCrossRefGoogle Scholar
  286. Yaffe D (1969) Cellular aspects of muscle differentiation in vitro. Curr Top Dev Biol 4:37–77PubMedCrossRefGoogle Scholar
  287. Yamada M, Tatsumi R, Kikuiri T, Okamoto S, Nonoshita S, Mizunoya W et al al (2006) Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle & Nerve; Epub ahead of print:NAGoogle Scholar
  288. Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ (2001) Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 60(3):351–361PubMedCrossRefGoogle Scholar
  289. Yang J, Zhao B (2006) Postnatal expression of myostatin propeptide cDNA maintained high muscle growth and normal adipose tissue mass in transgenic mice fed a high-fat diet. Mol Reprod Dev 73(4):462–469PubMedCrossRefGoogle Scholar
  290. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64(4):841–848PubMedCrossRefGoogle Scholar
  291. Yoshida S, Fujisawa-Sehara A, Taki T, Arai K, Nabeshima Y (1996) Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts. J Cell Biol 132(1):181–193PubMedCrossRefGoogle Scholar
  292. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? J Cell Biol 166(3):347–357PubMedCrossRefGoogle Scholar
  293. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: A stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191PubMedCrossRefGoogle Scholar
  294. Zeng C, Pesall JE, Gilkerson KK, McFarland DC (2002) The effect of hepatocyte growth factor on turkey satellite cell proliferation and differentiation. Poult Sci 81(8):1191–1198PubMedGoogle Scholar
  295. Zhao B, Wall RJ, Yang J (2005) Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 337(1):248–255PubMedCrossRefGoogle Scholar
  296. Zhao P, Caretti G, Mitchell S, McKeehan WL, Boskey AL, Pachman LM et al (2006) Fgfr4 Is Required for Effective Muscle Regeneration in vivo: Delineation of a MyoD-Tead2-Fgfr4 Transcriptional Pathway. J Biol Chem 281(1):429–438PubMedCrossRefGoogle Scholar
  297. Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229(2):380–392PubMedCrossRefGoogle Scholar
  298. Zhou L, Porter JD, Cheng G, Gong B, Hatala DA, Merriam AP et al (2006) Temporal and spatial mRNA expression patterns of TGF-beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 16(1):32–38PubMedCrossRefGoogle Scholar
  299. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN et al (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296(5572):1486–1488PubMedCrossRefGoogle Scholar
  300. Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T et al (2006) The human Sef-a isoform utilizes different mechanisms to regulate FGFR signaling pathways and subsequent cell fate. J Biol Chem; Epub ahead of print:M607327200Google Scholar
  301. Zuber ME, Zhou Z, Burrus LW, Olwin BB (1997) Cysteine-rich FGF receptor regulates intracellular FGF-1 and FGF-2 levels. J Cell Physiol 170(3):217–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gabi Shefer
    • 1
  • Zipora Yablonka-Reuveni
    • 2
  1. 1.Department Cell and Developmental BiologySackler School of Medicine,Tel Aviv UniversityTel AvivIsrael
  2. 2.Department of Biological Structure and Institute for Stem Cell and Regenerative MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations