Advertisement

Total Ozone Observations During the Past 80 Years

  • S. Brönnimann
  • C. Vogler
  • J. Staehelin
  • R. Stolarski
  • G. Hansen
Part of the Advances in Global Change Research book series (AGLO, volume 33)

Abstract

Ozone plays a key role in the physics and chemistry of the atmosphere. Total ozone, that is, the amount of ozone in an air column, is therefore a variable of vital climatic and environmental importance. The operational measurement of total ozone reaches back to the pioneering work of G. M. B. Dobson in the 1920s. Here, we give a brief overview of total ozone observations during the past 80 years, including the development of ground-based monitoring networks as well as the more recent satellite sensors. We summarize the measurement techniques, the available data as well as issues related to quality and comparability.

Keywords

Total Ozone Ozone Monitoring Instrument Atmospheric Ozone Total Ozone Mapping Spectrometer Stellar Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angione, R. J. and R. G. Roosen, 1983: Baseline ozone results from 1923 to 1955. J. Clim. Appl. Meteorol., 22, 1377–1383.CrossRefGoogle Scholar
  2. Bodeker, G. E., J. C. Scott, K. Kreher, and R. L. McKenzie, 2001: Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network, 1978–1998. J. Geophys. Res., 106, 23029–23042.CrossRefGoogle Scholar
  3. Bojkov, R. D., V. E. Fioletov, and A. M. Shalamjansky, 1994: Total ozone changes over Eurasia since 1973 based on reevaluated filter ozonometer data. J. Geophys. Res., 99, 22985–22999.CrossRefGoogle Scholar
  4. Brönnimann, S., 2005: Interactive comment on “Detection and measurement of total ozone from stellar spectra: paper 2. Historic data from 1935–1942” by R. E. M. Griffin. Atmos. Chem. Phys. Disc., 5, S4045–S4048.Google Scholar
  5. Brönnimann, S., J. Staehelin, S. F. G. Farmer, J. C. Cain, T. M. Svendby, and T. Svenøe, 2003: Total ozone observations prior to the IGY. I: A history. Q. J. Roy. Meteorol. Soc., 129, 2797–2817.CrossRefGoogle Scholar
  6. Brönnimann, S., J. Luterbacher, J. Staehelin, T. M. Svendby, G. Hansen, and T. Svenøe, 2004: Extreme climate of the global troposphere and stratosphere in 1940–1942 related to El Niño. Nature, 431, 971–974.CrossRefGoogle Scholar
  7. Dobson, G. M. B. and D. N. Harrison, 1926: Observations of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. R. Soc. A., 110, 660–693.CrossRefGoogle Scholar
  8. Dobson, G. M. B., 1968: Forty years’ research on atmospheric ozone at Oxford: a history. Appl. Optics, 7, 387–405.CrossRefGoogle Scholar
  9. Fabry, C., 1950: L’ozone atmosphérique. Paris.Google Scholar
  10. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210.CrossRefGoogle Scholar
  11. Fioletov, V., G. Bodeker, A. Miller, R. McPeters, and R. Stolarski, 2002: Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000. J. Geophys. Res., 107, doi 10.1029/2001JD001143.Google Scholar
  12. Griffin, R. E. M., 2006: Detection and measurement of total ozone from stellar spectra: paper 2. Historic data from 1935–1942. Atmos. Chem. Phys., 6, 2231–2240.Google Scholar
  13. Hansen, G. and T. Svenøe, 2005: Multilinear regression analysis of the 65-year Tromsø total ozone series. J. Geophys. Res., 110, doi:10.1029/2004JD005387.Google Scholar
  14. Heath, D. F., C. L. Mateer, and A. J. Krueger, 1973: The Nimbus-4 BUV atmospheric ozone experiment–two year’s operation. Pure Appl. Geophys., 106–108, 1238–1253.CrossRefGoogle Scholar
  15. Herman, J. R., R. McPeters, R. Stolarski, D. Larko, and R. Hudson, 1991: Global average ozone change from November 1978 to May 1990. J. Geophys. Res., 96, 17279–17305.CrossRefGoogle Scholar
  16. Hofmann, D. F. et al., 1989: Stratospheric clouds and ozone depletion in the Arctic during January 1989. Nature, 340, 117–121.CrossRefGoogle Scholar
  17. Kerr, J. B., C. T. McElroy, D. I. Wardle, R. A. Olafson, and W. P. J. Evans, 1985: The automated Brewer Spectrophotometer. In: Atmospheric Ozone, C. S. Zerefos and A. Ghazi, eds., 543–546.Google Scholar
  18. Miller, A. J. et al., 2002: A cohesive total ozone data set from the SBUV(/2) satellite system. J. Geophys. Res., 107, doi 10.1029/2001JD000853.Google Scholar
  19. Pommereau, J. P. and F. Goutail, 1988: O3 and NO2 ground-based measurements by visible spectrometry during arctic winter and spring 1988. Geophys. Res. Lett., 15, 891–894.CrossRefGoogle Scholar
  20. Prabhakara, C., V. V. Salomonson, B. J. Conrath, J. Sterania, and L. J. Allison, 1971: Nimbus 3 IRIS ozone measurements over southeast Asia and Africa during June and July 1969. J. Atmos. Sci., 28, 828–831.CrossRefGoogle Scholar
  21. Stolarski, R. S., 2001: History of the study of atmospheric ozone. Ozone-sci. Eng., 23, 421–428.CrossRefGoogle Scholar
  22. Stolarski, R. S. and S. M. Frith, 2006: Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty. Atmos. Chem. Phys., 6, 4057–4065.Google Scholar
  23. Stolarski, R. S., A. J., Krueger, M. R. Schoeberl, R. D. McPeters, P. A. Newman, and J. C. Alpert, 1986: Nimbus-7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322, 808–811.CrossRefGoogle Scholar
  24. Simmons, E. L., 1990: Sixty-four years of regular ozone measurements. Meteorol Mag., 119, 53–57.Google Scholar
  25. Solomon, S., 1999: Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys., 37, 275–316.CrossRefGoogle Scholar
  26. Staehelin, J., N. R. P. Harris, C. Appenzeller, and J. Eberhard, 2001: Ozone trends: a review. Rev. Geophys., 39, 231–290.CrossRefGoogle Scholar
  27. Staehelin, J. et al., 1998: Total ozone series at Arosa (Switzerland): homogenisation and data comparison. J. Geophys. Res., 103, 5827–5841.CrossRefGoogle Scholar
  28. Vogler, C., S. Brönnimann, and G. Hansen, 2006: Re-evaluation of the 1950–1962 total ozone record from Longyearbyen, Svalbard. Atmos. Chem. Phys., 6, 4763–4773.CrossRefGoogle Scholar
  29. Vogler, C., S. Brönnimann, J. Staehelin, R. E. M. Griffin, 2007: The Dobson total ozone series of Oxford: re-evaluation and applications. J. Geophys. Res., 112, D20116, doi:10.1029/2007 JD008894.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • S. Brönnimann
    • 1
  • C. Vogler
    • 1
  • J. Staehelin
    • 1
  • R. Stolarski
    • 2
  • G. Hansen
    • 3
  1. 1.Institute for Atmospheric and Climate Science ETH ZürichSwitzerland
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Norwegian Institute for Air Research (NILU)TromsøNorway

Personalised recommendations