Skip to main content

Decadal Changes in Surface Radiative Fluxes and Their Role in Global Climate Change

  • Chapter
Climate Variability and Extremes during the Past 100 Years

Part of the book series: Advances in Global Change Research ((AGLO,volume 33))

Abstract

The major anthropogenic impact on climate over the 20th century occurred through a modification of the earth radiation balance by changing the amount of greenhouse gases and aerosol in the atmosphere. Radiative energy reaching the ground is particularly important for mankind as it is a key determinant of the climate of our environments and strongly influences the thermal and hydrological conditions at the Earth surface. Recent evidence suggests that significant anthropogenic-induced variations occurred in both surface solar and thermal radiation over the past decades, related to anthropogenic air pollution and greenhouse gas emissions, respectively. Observed solar radiation incident at the surface showed a continuous decrease (“global dimming” or “surface solar dimming”) since the beginning of worldwide measurements in the mid-20th century up to the 1980s, when a widespread trend reversal towards an increase (“global brightening” or “surface solar brightening”) occurred. This trend reversal was favoured by an increasing transparency of the cloud-free atmosphere, due to air pollution regulations and the breakdown of the economy in former communist countries. In the thermal spectrum of radiation, which is directly modified by changes in atmospheric greenhouse gas concentrations, a gradual increase in surface downwelling thermal radiation over recent years can be seen, in line with our expectations from an increasing greenhouse effect. This increasing greenhouse effect has become only fully apparent after the decline of solar dimming, which effectively masked greenhouse warming prior to the 1980s. The present article discusses the variations in surface radiation and their impact on various aspects of the climate system over the past decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, T. P. and G. M. Stokes, 2003: The atmospheric radiation measurement program. Phys. Today, 56, 38–44.

    Article  Google Scholar 

  • Alpert, P., P. Kishcha, J. Y. Kaufman, and R. Schwarzbard 2005: Global dimming or local dimming? Effect of urbanization on sunlight availability. Geophys. Res. Lett., 32, L17802, doi:10.1029/2005GL023320.

    Article  Google Scholar 

  • Andreae, M. O., C. D. Jones, and P. M. Cox, 2005: Strong present day aerosol cooling implies a hot future. Nature, 435, 1187–1190.

    Article  CAS  Google Scholar 

  • Beck, C., J. Grieser, and B. Rudolf, 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Klimastatusbericht 2004, DWD, 181–190.

    Google Scholar 

  • Bristow, K. L. and S. Campbell, 1984: On the relationship between in coming solar radiation and daily maximum and minimum temperature. Agr. Forest Meteorol., 31, 159–166.

    Article  Google Scholar 

  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapour on diurnal temperature range. J. Climate, 12, 2451–2473.

    Article  Google Scholar 

  • Dutton, E. G., D. W. Nelson, R. S. Stone, D. Longenecker, G. Carbaugh, J. M. Harris, and J. Wendell, 2006: Decadal variations in surface solar irradiance as observed in a globally remote network. J. Geophys. Res., 111, D19101, doi:10.1029/2005JD006901.

    Article  Google Scholar 

  • Easterling, D. R. et al., 1997: Maximum and minimum temperature trends for the globe. Science, 277, 364–367.

    Article  CAS  Google Scholar 

  • Gilgen, H., M. Wild, and A.Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Climate, 11, 2042–2061.

    Google Scholar 

  • Karl, T. R. et al., 1993: Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc., 74, 1007–1023.

    Article  Google Scholar 

  • Li, H., A. Robock, and M. Wild, 2007: Evaluation of Intergovernmental Panel on climate change fourth assessment soil moisture simulations for the second half of the twentieth century. J. Geophys. Res., 112, D06106, doi:10, 1029/2006JD007455.

    Article  Google Scholar 

  • Liu, B., M. Xu, M. Henderson, Y. Qi, and Y. Li, 2004a: Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J. Climate, 17, 4453–4462.

    Article  Google Scholar 

  • Liu, B., M. Xu, M. Henderson, and W. Gong, 2004b: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., 109, doi:10.1029/2004JD004511.

    Google Scholar 

  • Liepert, B. G., 2002: Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett., 29, doi:10.1029/2002GL014910.

    Google Scholar 

  • Mitchell, T. D. and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climateatol., 25, 693–712.

    Article  Google Scholar 

  • Norris, J. R. and M. Wild, 2007: Trends in direct and indirect aerosol radiative effects over Europe inferred from observed solar “dimming” and “brightening”. J. Geophys. Res. (in press).

    Google Scholar 

  • Ohmura, A. and H. Lang, 1989: Secular variation of global radiation over Europe. In: Current Problems in Atmospheric Radiation, J. Lenoble, J. F. Geleyn, eds., Deepak, Hampton, VA, 98–301.

    Google Scholar 

  • Ohmura, A., H. Gilgen, and M. Wild, 1989: Global Energy Balance Archive GEBA, World Climate Program – Water Project A7, Zürcher Geografische Schriften No. 34, Verlag der Fachvereine, Zürich.

    Google Scholar 

  • Ohmura, A. et al., 1998: Baseline Surface Radiation Network (BSRN/WCRP), a new precision radiometry for climate research. Bull. Am. Meteorol. Soc., 79, 2115–2136.

    Article  Google Scholar 

  • Ohmura, A. and M. Wild, 2002: Is the hydrological cycle accelerating? Science, 298, 1345–1346.

    Article  CAS  Google Scholar 

  • Pallé, E., P. Montanes-Rodriguez, P. R. Goode, S. E. Koonin, M. Wild, and S. Casadio, 2005: A multi-data comparison of shortwave climate forcing changes. Geophys. Res. Lett., 32, L21702, doi:10.1029/2005GL023847.

    Article  Google Scholar 

  • Paul, F., A. Kaab, M. Maisch, T. Kellenberger, and W. Haeberli, 2004: Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett., 31, L21402.

    Article  Google Scholar 

  • Philipona, R., B. Dürr, C. Marty, A. Ohmura, and M. Wild, 2004: Radiative forcing – measured at Earth’s surface – corroborate the increasing greenhouse effect. Geophys. Res. Lett., 31, L03202, doi:10.1029/2003GL01876.

    Article  CAS  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosol, climate and the hydrological cycle. Science, 294, 2119–2124.

    Article  CAS  Google Scholar 

  • Robock, A., M. Mu, K. Vinnikov, I. V. Trofimova, and T. I. Adamenko, 2005: Forty-five years of observed soil moisture in the Ukraine: no summer desiccation (yet). Geophys. Res. Lett., 32, L 03401, doi:10.1029/2004GL021914.

    Google Scholar 

  • Roderick, M. L. G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 1410–1411.

    CAS  Google Scholar 

  • Rotstayn, L. D. U. Lohmann, 2002: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res., 107, 4592.

    Article  CAS  Google Scholar 

  • Stanhill, G. and S. Cohen, 2001: Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agr. Forest Meteorol., 107, 255–278.

    Article  Google Scholar 

  • Stern, D. I., 2006: Reversal of the trend in global anthropogenic sulfur emissions. Glob. Environ. Change, 16, 207–220.

    Article  Google Scholar 

  • Stier, P., J. Feichter, S. Kinne, S. Kloster, E. Vignatti, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, and O. Boucher, 2005: The aerosol-climate model ECHAM5-HAM. Atm. Chem. Phys., 5, 1125–1156.

    CAS  Google Scholar 

  • Stier, P., J. Feichter, E. Roeckner, S. Kloster, and M. Esch, 2006: The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100. Atmos. Chem. Phys., 6, 3059–3076.

    Article  CAS  Google Scholar 

  • Streets, D. G., Y. Wu, and M. Chin, 2006: Two-decadal aerosol trends as a likely explanatio nof the global dimming/brightening transition. Geophys. Res. Lett., 33, L15806, doi:10.1029/2006GL026471.

    Article  Google Scholar 

  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: an update through 2004. Geophys. Res. Lett., 32, L23822, doi:10.1029/2005GL024379.

    Article  Google Scholar 

  • Wild, M., A. Ohmura, and U. Cubasch, 1997: GCM simulated surface energy fluxes in climate change experiments. J. Climate, 10, 3093–3110.

    Article  Google Scholar 

  • Wild, M. and A. Ohmura, 2004: BSRN longwave downward radiation measurements combined with GCMs show promise for greenhouse detection studies. GEWEX News, 14(4), 9–10.

    Google Scholar 

  • Wild, M., A. Ohmura, H. Gilgen, and D. Rosenfeld, 2004: On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett., 31, L11201, doi:10.1029/2003GL019188.

    Article  Google Scholar 

  • Wild, M. et al., 2005: From dimming to brightening: decadal changes in surface solar radiation. Science, 308, 847–850.

    Article  CAS  Google Scholar 

  • Wild, M., A. Ohmura, and K. Makowski, 2007: Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34, L04702, doi:10.1029/2006GL028031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Wild, M. (2008). Decadal Changes in Surface Radiative Fluxes and Their Role in Global Climate Change. In: Brönnimann, S., Luterbacher, J., Ewen, T., Diaz, H., Stolarski, R., Neu, U. (eds) Climate Variability and Extremes during the Past 100 Years. Advances in Global Change Research, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6766-2_10

Download citation

Publish with us

Policies and ethics