Knowledge Base Formulation for Aided Design Tool

  • Jérôme Pailhès
  • Mohammed Sallaou
  • Jean-Pierre Nadeau


In this article, a design support tool is developed and applied to a wind turbine. An analysis and structuring methodology is similarly investigated and applied. This methodology identifies structuring characteristics and provides a parsimonious overview of the design problem. The model is a set of constraints. The present approach uses functional analysis tools to get solutions at a given system level. These tools are completed by two TRIZ evolution laws and by functional flow analysis. The present analysis contributes to setting up models linked to functions and action verbs. These models can be treated as constraint-satisfaction problems. The present knowledge base is organised in terms of system and qualification levels, which leads to the generation of potentially validated solutions to continue with a detailed design process.


preliminary design design support functional modelling integration of knowledge constraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Nadeau, J. Pailhès, R. Dore, D. Scaravetti, Analyser, qualifier et innover en conception par les lois d’évolution TRIZ, in 6e Congrès International de Génie Industriel, Besançon, France, 7–10 June 2005Google Scholar
  2. 2.
    D.G. Ullman, The Mechanical Design Process, 3rd edition, McGraw-Hill Higher Education, New York, 2003.Google Scholar
  3. 3.
    V. Hubka, E. Eder, Design Science, Edited for the web by Filippo A. Salustri, 2001.Google Scholar
  4. 4.
    L. Zimmer, P. Zablit, Global aircraft predesign based on constraint propagation and interval analysis, in Proceedings of CEAS Conference on Multidisciplinary Aircraft Design and Optimisation, Köln, Germany, June 2001.Google Scholar
  5. 5.
    D. Scaravetti, Formalisation préalable d’un problème de conception, pour l’aide à la dé-cision en conception préliminaire, Thèse de Doctorat, ENSAM, 2004.Google Scholar
  6. 6.
    S.D. Savransky, Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving, CRC Press, Boca Raton, 2000.CrossRefGoogle Scholar
  7. 7.
    D. Scaravetti, J.-P. Nadeau, J. Pailhès, P. Sebastian, Structuring of embodiment design problem based on the product lifecycle, International Journal of Product Development, 2(1/2), 2005, 47–70.CrossRefGoogle Scholar
  8. 8.
    AFNOR. NF X50-150/151, analyse de la valeur, analyse fonctionnelle: Vocabulaire NF, Association Française de Normalisation, Paris, 1990–1991.Google Scholar
  9. 9.
    A. Arbaoui, J.P. Nadeau, P. Sebastian, Constraint modelling and decision support for wind energy, in 12th Seminar on Life Cycle Engineering, CIRP 2005, Grenoble, France, 3–5 April 2005.Google Scholar
  10. 10.
    A. Arbaoui, J.P. Nadeau, P. Sebastian, L. Bchir, A. Brakez, Aide à la décision pour la définition d’un système éolien adapté à un site donné, in Congrès International CPI 2003, Meknès, Maroc, 22–24 October 2003.Google Scholar
  11. 11.
    R.E. Wilson, P.B.S. Lissaman, S.N. Walker, Aerodynamic Performance of Wind Turbines, ERDA/NSF/04014-76/1, Washington, DC, 1976.Google Scholar
  12. 12.
    Y. Vernat, Formalisation de modèles par contraintes en conception préliminaire, Thèse de doctorat, ENSAM, 2004.Google Scholar
  13. 13.
    W. Kay, A.L. London, Compact Heat Exchangers, 2nd edition, McGraw-Hill Book Company, 1984.Google Scholar
  14. 14.
    Y. Vernat, J.P. Nadeau, P. Sebastian, X. Fischer, Démarche de formalisation de modèles adaptés à la conception préliminaire, in 6e Congrès International de Génie Industriel, Besançon, France, 7–10 June 2005.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jérôme Pailhès
    • 1
  • Mohammed Sallaou
    • 2
  • Jean-Pierre Nadeau
    • 1
  1. 1.TREFLE-ENSAM, Esplanade d’Arts et MétiersTalence CédexFrance
  2. 2.ENSAM-MeknèsMeknès, IsmaïliaMaroc

Personalised recommendations