Skip to main content

Natural Killer Cells at the Tumors Microenvironment

  • Chapter
  • 770 Accesses

Part of the book series: The Tumor Microenvironment ((TTME,volume 1))

NK cells have the innate ability to recognize and eliminate transformed cells. However, tumors still form and progress in seemingly immune-competent individuals. The tumor microenvironment controls NK recruitment and maintenance in situ. Current understanding of NK basic biology explain in part their limitations, that might turn the anti-cancerous devotion into a tumor progression outcome. Recent progress in understanding of the evasion from NK recognition and counterattack against the killer cells are discussed, along with unresolved questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiessling, R., Klein, E., Pross, H., and Wigzell, H. (1975). “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. European journal of immunology 5, 117–121.

    PubMed  CAS  Google Scholar 

  2. Kiessling, R., Klein, E., and Wigzell, H. (1975). “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. European journal of immunology 5, 112–117.

    PubMed  CAS  Google Scholar 

  3. Colucci, F., Caligiuri, M.A., and Di Santo, J.P. (2003). What does it take to make a natural killer? Nature reviews 3, 413–425.

    Article  PubMed  CAS  Google Scholar 

  4. Di Santo, J.P. (2006). Natural killer cell developmental pathways: a question of balance. Annual review of immunology 24, 257–286.

    PubMed  Google Scholar 

  5. Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., and Moretta, L. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annual review of immunology 19, 197–223.

    PubMed  CAS  Google Scholar 

  6. Bottino, C., Castriconi, R., Moretta, L., and Moretta, A. (2005). Cellular ligands of activating NK receptors. Trends in immunology 26, 221–226.

    PubMed  CAS  Google Scholar 

  7. Tassi, I., Klesney-Tait, J., and Colonna, M. (2006). Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunological reviews 214, 92–105.

    PubMed  CAS  Google Scholar 

  8. Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K.J., Podack, E.R., Zinkernagel, R.M., and Hengartner, H. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37.

    PubMed  CAS  Google Scholar 

  9. Clementi, R., Locatelli, F., Dupre, L., Garaventa, A., Emmi, L., Bregni, M., Cefalo, G., Moretta, A., Danesino, C., Comis, M., et al. (2005). A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood 105, 4424–4428.

    PubMed  CAS  Google Scholar 

  10. Martin-Fontecha, A., Thomsen, L.L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H) 1 priming. Nature immunology 5, 1260–1265.

    PubMed  CAS  Google Scholar 

  11. Hanna, J., Gonen-Gross, T., Fitchett, J., Rowe, T., Daniels, M., Arnon, T.I., Gazit, R., Joseph, A., Schjetne, K.W., Steinle, A., et al. (2004). Novel APC-like properties of human NK cells directly regulate T cell activation. The journal of clinical investigation 114, 1612–1623.

    PubMed  CAS  Google Scholar 

  12. Moretta, L., Bottino, C., Pende, D., Vitale, M., Mingari, M.C., and Moretta, A. (2005). Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunology letters 100, 7–13.

    PubMed  CAS  Google Scholar 

  13. Nedvetzki, S., Sowinski, S., Eagle, R.A., Harris, J., Vely, F., Pende, D., Trowsdale, J., Vivier, E., Gordon, S., and Davis, D.M. (2007). Reciprocal regulation of natural killer cells and macrophages associated with distinct immune synapses. Blood.

    Google Scholar 

  14. Schleypen, J.S., Von Geldern, M., Weiss, E.H., Kotzias, N., Rohrmann, K., Schendel, D.J., Falk, C.S., and Pohla, H. (2003). Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. International journal of cancer 106, 905–912.

    CAS  Google Scholar 

  15. Weinberg, R.A. (2006). The Biology of Cancer, 1st edn. (Garland Science).

    Google Scholar 

  16. Coca, S., Perez-Piqueras, J., Martinez, D., Colmenarejo, A., Saez, M.A., Vallejo, C., Martos, J.A., and Moreno, M. (1997). The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79, 2320–2328.

    PubMed  CAS  Google Scholar 

  17. Ishigami, S., Natsugoe, S., Tokuda, K., Nakajo, A., Che, X., Iwashige, H., Aridome, K., Hokita, S., and Aikou, T. (2000). Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88, 577–583.

    PubMed  CAS  Google Scholar 

  18. Villegas, F.R., Coca, S., Villarrubia, V.G., Jimenez, R., Chillon, M.J., Jareno, J., Zuil, M., and Callol, L. (2002). Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung cancer 35, 23–28.

    PubMed  Google Scholar 

  19. Lorenzen, J., Lewis, C.E., McCracken, D., Horak, E., Greenall, M., and McGee, J.O. (1991). Human tumour-associated NK cells secrete increased amounts of interferon-gamma and interleukin-4. British journal of cancer 64, 457–462.

    PubMed  CAS  Google Scholar 

  20. Albertsson, P.A., Basse, P.H., Hokland, M., Goldfarb, R.H., Nagelkerke, J.F., Nannmark, U., and Kuppen, P.J. (2003). NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends in immunology 24, 603–609.

    PubMed  CAS  Google Scholar 

  21. Hokland, M., Kjaergaard, J., Kuppen, P.J., Nannmark, U., Agger, R., Hokland, P., and Basse, P. (1999). Endogenous and adoptively transferred A-NK and T-LAK cells continuously accumulate within murine metastases up to 48 h after inoculation. In vivo 13, 199–204.

    PubMed  CAS  Google Scholar 

  22. Hanna, J., Wald, O., Goldman-Wohl, D., Prus, D., Markel, G., Gazit, R., Katz, G., Haimov-Kochman, R., Fujii, N., Yagel, S., et al. (2003). CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 102, 1569–1577.

    PubMed  CAS  Google Scholar 

  23. Ferlazzo, G., Pack, M., Thomas, D., Paludan, C., Schmid, D., Strowig, T., Bougras, G., Muller, W.A., Moretta, L., and Munz, C. (2004). Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proceedings of the national academy of sciences of the United States of America 101, 16606–16611.

    PubMed  CAS  Google Scholar 

  24. Romagnani, C., Della Chiesa, M., Kohler, S., Moewes, B., Radbruch, A., Moretta, L., Moretta, A., and Thiel, A. (2005). Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+ T helper cells and CD4+ CD25hi T regulatory cells. European journal of immunology 35, 2452–2458.

    PubMed  CAS  Google Scholar 

  25. Moller, M.J., Kammerer, R., and von Kleist, S. (1998). A distinct distribution of natural killer cell subgroups in human tissues and blood. International journal of cancer 78, 533–538.

    CAS  Google Scholar 

  26. Jonges, L.E., Albertsson, P., van Vlierberghe, R.L., Ensink, N.G., Johansson, B.R., van de Velde, C.J., Fleuren, G.J., Nannmark, U., and Kuppen, P.J. (2001). The phenotypic heterogeneity of human natural killer cells: presence of at least 48 different subsets in the peripheral blood. Scandinavian journal of immunology 53, 103–110.

    PubMed  CAS  Google Scholar 

  27. Gazit, R., Gruda, R., Elboim, M., Arnon, T.I., Katz, G., Achdout, H., Hanna, J., Qimron, U., Landau, G., Greenbaum, E., et al. (2006). Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nature immunology 7, 517–523.

    PubMed  CAS  Google Scholar 

  28. Kim, S., Iizuka, K., Kang, H.S., Dokun, A., French, A.R., Greco, S., and Yokoyama, W.M. (2002). In vivo developmental stages in murine natural killer cell maturation. Nature immu–nology 3, 523–528.

    Google Scholar 

  29. Tsuchiyama, J., Yoshino, T., Toba, K., Harada, N., Nishiuchi, R., Akagi, T., Furukawa, T., Takahashi, M., Fuse, I., Aizawa, Y., and Harada, M. (2002). Induction and characterization of cutaneous lymphocyte antigen on natural killer cells. British journal of haematology 118, 654–662.

    PubMed  CAS  Google Scholar 

  30. Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T.J., and Yoshie, O. (1997). Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530.

    PubMed  CAS  Google Scholar 

  31. Xin, H., Kikuchi, T., Andarini, S., Ohkouchi, S., Suzuki, T., Nukiwa, T., Huqun, Hagiwara, K., Honjo, T., and Saijo, Y. (2005). Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells. European journal of immunology 35, 1371–1380.

    Google Scholar 

  32. Al-Atrash, G., Shetty, S., Idell, S., Xue, Y., Kitson, R.P., Halady, P.K., and Goldfarb, R.H. (2002). IL-2-mediated upregulation of uPA and uPAR in natural killer cells. Biochemical and biophysical research communications 292, 184–189.

    PubMed  CAS  Google Scholar 

  33. Johansson, B.R. and Nannmark, U. (1996). Ultrastructure of interactions between activated murine natural killer cells and melanoma cells in an extracellular matrix (Matrigel) environment. Natural immunity 15, 98–106.

    PubMed  Google Scholar 

  34. Johansson, B.R., Unger, M.L., Albertsson, P., Casselbrant, A., Nannmark, U., and Hokland, M. (1996). Infiltration and lysis of tumour cell aggregates by adherent interleukin-2-activated natural killer cells is distinct from specific cytolysis. Natural immunity 15, 87–97.

    PubMed  Google Scholar 

  35. Palmieri, G., Gismondi, A., Galandrini, R., Milella, M., Serra, A., De Maria, R., and Santoni, A. (1996). Interaction of natural killer cells with extracellular matrix induces early intracellular signalling events and enhances cytotoxic functions. Natural immunity 15, 147–153.

    PubMed  Google Scholar 

  36. Somasundaram, R., Ruehl, M., Tiling, N., Ackermann, R., Schmid, M., Riecken, E.O., and Schuppan, D. (2000). Collagens serve as an extracellular store of bioactive interleukin 2. The journal of biological chemistry 275, 38170–38175.

    PubMed  CAS  Google Scholar 

  37. Kuppen, P.J., Gorter, A., Hagenaars, M., Jonges, L.E., Giezeman-Smits, K.M., Nagelkerke, J.F., Fleuren, G., and van de Velde, C.J. (2001). Role of NK cells in adoptive immunotherapy of metastatic colorectal cancer in a syngeneic rat model. Immunological reviews 184, 236–243.

    PubMed  CAS  Google Scholar 

  38. Bajenoff, M., Breart, B., Huang, A.Y., Qi, H., Cazareth, J., Braud, V.M., Germain, R.N., and Glaichenhaus, N. (2006). Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. The journal of experimental medicine 203, 619–631.

    PubMed  CAS  Google Scholar 

  39. Ljunggren, H.G., and Karre, K. (1986). Experimental strategies and interpretations in the analysis of changes in MHC gene expression during tumour progression. Opposing influences of T cell and natural killer mediated resistance? Journal of immunogenetics 13, 141–151.

    PubMed  CAS  Google Scholar 

  40. Karre, K. (2002). NK cells, MHC class I molecules and the missing self. Scandinavian journal of immunology 55, 221–228.

    PubMed  CAS  Google Scholar 

  41. Arnon, T.I., Markel, G., and Mandelboim, O. (2006). Tumor and viral recognition by natural killer cells receptors. Seminars in cancer biology 16, 348–358.

    PubMed  CAS  Google Scholar 

  42. Mandelboim, O., Malik, P., Davis, D.M., Jo, C.H., Boyson, J.E., and Strominger, J.L. (1999). Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proceedings of the national academy of sciences of the United States of America 96, 5640–5644.

    PubMed  CAS  Google Scholar 

  43. Raulet, D.H. (2003). Roles of the NKG2D immunoreceptor and its ligands. Nature reviews 3, 781–790.

    PubMed  CAS  Google Scholar 

  44. Welte, S., Kuttruff, S., Waldhauer, I., and Steinle, A. (2006). Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nature immunology 7, 1334–1342.

    PubMed  CAS  Google Scholar 

  45. Bryceson, Y.T., March, M.E., Ljunggren, H.G., and Long, E.O. (2006). Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166.

    PubMed  CAS  Google Scholar 

  46. Geldart, T. and Illidge, T. (2005). Anti-CD 40 monoclonal antibody. Leukemia & lymphoma 46, 1105–1113.

    CAS  Google Scholar 

  47. Arnon, T.I., Achdout, H., Levi, O., Markel, G., Saleh, N., Katz, G., Gazit, R., 111. Gonen-Gross, T., Hanna, J., Nahari, E., et al. (2005). Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nature immunology 6, 515–523.

    Google Scholar 

  48. Arnon, T.I., Lev, M., Katz, G., Chernobrov, Y., Porgador, A., and Mandelboim, O. (2001). Recognition of viral hemagglutinins by NKp44 but not by NKp30. European journal of immunology 31, 2680–2689.

    PubMed  CAS  Google Scholar 

  49. Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T.I., Bushkin, Y., Davis, D.M., Strominger, J.L., Yewdell, J.W., and Porgador, A. (2001). Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060.

    PubMed  CAS  Google Scholar 

  50. Arnon, T.I., Achdout, H., Lieberman, N., Gazit, R., Gonen-Gross, T., Katz, G., Bar-Ilan, A., Bloushtain, N., Lev, M., Joseph, A., et al. (2004). The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103, 664–672.

    PubMed  CAS  Google Scholar 

  51. Pende, D., Parolini, S., Pessino, A., Sivori, S., Augugliaro, R., Morelli, L., Marcenaro, E., Accame, L., Malaspina, A., Biassoni, R., et al. (1999). Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. The journal of experimental medicine 190, 1505–1516.

    PubMed  CAS  Google Scholar 

  52. Pessino, A., Sivori, S., Bottino, C., Malaspina, A., Morelli, L., Moretta, L., Biassoni, R., and Moretta, A. (1998). Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. The journal of experimental medicine 188, 953–960.

    PubMed  CAS  Google Scholar 

  53. Vitale, M., Bottino, C., Sivori, S., Sanseverino, L., Castriconi, R., Marcenaro, E., Augugliaro, R., Moretta, L., and Moretta, A. (1998). NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. The journal of experimental medicine 187, 2065–2072.

    PubMed  CAS  Google Scholar 

  54. Bloushtain, N., Qimron, U., Bar-Ilan, A., Hershkovitz, O., Gazit, R., Fima, E., Korc, M., Vlodavsky, I., Bovin, N.V., and Porgador, A. (2004). Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. Journal of immunology 173, 2392–2401.

    CAS  Google Scholar 

  55. Costello, R.T., Sivori, S., Marcenaro, E., Lafage-Pochitaloff, M., Mozziconacci, M.J., Reviron, D., Gastaut, J.A., Pende, D., Olive, D., and Moretta, A. (2002). Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99, 3661–3667.

    PubMed  CAS  Google Scholar 

  56. Moretta, A. (2005). The dialogue between human natural killer cells and dendritic cells. Current opinion in immunology 17, 306–311.

    PubMed  CAS  Google Scholar 

  57. Sivori, S., Pende, D., Bottino, C., Marcenaro, E., Pessino, A., Biassoni, R., Moretta, L., and Moretta, A. (1999). NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. European journal of immunology 29, 1656–1666.

    PubMed  CAS  Google Scholar 

  58. Carlsten, M., Bjorkstrom, N.K., Norell, H., Bryceson, Y., van Hall, T., Baumann, B.C., Hanson, M., Schedvins, K., Kiessling, R., Ljunggren, H.G., and Malmberg, K.J. (2007). DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer research 67, 1317–1325.

    PubMed  CAS  Google Scholar 

  59. Katz, G., Gazit, R., Arnon, T.I., Gonen-Gross, T., Tarcic, G., Markel, G., Gruda, R., Achdout, H., Drize, O., Merims, S., and Mandelboim, O. (2004). MHC class I-independent recognition of NK-activating receptor KIR2DS4. Journal of immunology 173, 1819–1825.

    CAS  Google Scholar 

  60. Parolini, S., Bottino, C., Falco, M., Augugliaro, R., Giliani, S., Franceschini, R., Ochs, H.D., Wolf, H., Bonnefoy, J.Y., Biassoni, R., et al. (2000). X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. The journal of experimental medicine 192, 337–346.

    PubMed  CAS  Google Scholar 

  61. Fujii, H., Trudeau, J.D., Teachey, D., Fish, J.D., Grupp, S.A., Schultz, K.R., and Reid, G.S. (2006). In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood.

    Google Scholar 

  62. Chang, C.C. and Ferrone, S. (2006). NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Seminars in cancer biology 16, 383–392.

    PubMed  CAS  Google Scholar 

  63. Gasser, S., Orsulic, S., Brown, E.J., and Raulet, D.H. (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190.

    PubMed  CAS  Google Scholar 

  64. Boissel, N., Rea, D., Tieng, V., Dulphy, N., Brun, M., Cayuela, J.M., Rousselot, P., Tamouza, R., Le Bouteiller, P., Mahon, F.X., et al. (2006). BCR/ABL oncogene directly controls MHC class I chain-related molecule an expression in chronic myelogenous leukemia. Journal of immunology 176, 5108–5116.

    CAS  Google Scholar 

  65. Coudert, J.D., Zimmer, J., Tomasello, E., Cebecauer, M., Colonna, M., Vivier, E., and Held, W. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106, 1711–1717.

    PubMed  CAS  Google Scholar 

  66. Li, Z., Groh, V., Strong, R.K., and Spies, T. (2000). A single amino acid substitution causes loss of expression of a MICA allele. Immunogenetics 51, 246–248.

    PubMed  CAS  Google Scholar 

  67. Salih, H.R., Rammensee, H.G., and Steinle, A. (2002). Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. Journal of immunology 169, 4098–4102.

    CAS  Google Scholar 

  68. Wu, J.D., Higgins, L.M., Steinle, A., Cosman, D., Haugk, K., and Plymate, S.R. (2004). Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. The journal of clinical investigation 114, 560–568.

    PubMed  CAS  Google Scholar 

  69. Holdenrieder, S., Stieber, P., Peterfi, A., Nagel, D., Steinle, A., and Salih, H.R. (2006). Soluble MICA in malignant diseases. International journal of cancer 118, 684–687.

    CAS  Google Scholar 

  70. Holdenrieder, S., Stieber, P., Peterfi, A., Nagel, D., Steinle, A., and Salih, H.R. (2006). Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer immunology immunotherapy 55, 1584–1589.

    Google Scholar 

  71. Waldhauer, I. and Steinle, A. (2006). Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer research 66, 2520–2526.

    PubMed  CAS  Google Scholar 

  72. Song, H., Kim, J., Cosman, D., and Choi, I. (2006). Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cellular immunology 239, 22–30.

    PubMed  CAS  Google Scholar 

  73. Oppenheim, D.E., Roberts, S.J., Clarke, S.L., Filler, R., Lewis, J.M., Tigelaar, R.E., Girardi, M., and Hayday, A.C. (2005). Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nature immunology 6, 928–937.

    PubMed  CAS  Google Scholar 

  74. Wiemann, K., Mittrucker, H.W., Feger, U., Welte, S.A., Yokoyama, W.M., Spies, T., Rammensee, H.G., and Steinle, A. (2005). Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. Journal of immunology 175, 720–729.

    CAS  Google Scholar 

  75. Fauriat, C., Just-Landi, S., Mallet, F., Arnoulet, C., Sainty, D., Olive, D., and Costello, R.T. (2007). Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109, 323–330.

    PubMed  CAS  Google Scholar 

  76. Contini, P., Ghio, M., Poggi, A., Filaci, G., Indiveri, F., Ferrone, S., and Puppo, F. (2003). Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. European journal of immunology 33, 125–134.

    PubMed  CAS  Google Scholar 

  77. Kageshita, T., Yoshii, A., Kimura, T., Kuriya, N., Ono, T., Tsujisaki, M., Imai, K., and Ferrone, S. (1993). Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer research 53, 4927–4932.

    PubMed  CAS  Google Scholar 

  78. Witkowska, A.M. and Borawska, M.H. (2004). Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. European cytokine network 15, 91–98.

    PubMed  CAS  Google Scholar 

  79. Raulet, D.H., Vance, R.E., and McMahon, C.W. (2001). Regulation of the natural killer cell receptor repertoire. Annual review of immunology 19, 291–330.

    PubMed  CAS  Google Scholar 

  80. Yokoyama, W.M., and Kim, S. (2006). How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257.

    PubMed  CAS  Google Scholar 

  81. Ito, M., Maruyama, T., Saito, N., Koganei, S., Yamamoto, K., and Matsumoto, N. (2006). Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. The journal of experimental medicine 203, 289–295.

    PubMed  Google Scholar 

  82. Jarahian, M., Watzl, C., Issa, Y., Altevogt, P., and Momburg, F. (2007). Blockade of natural killer cell-mediated lysis by NCAM140 expressed on tumor cells. International journal of cancer.

    Google Scholar 

  83. Markel, G., Lieberman, N., Katz, G., Arnon, T.I., Lotem, M., Drize, O., Blumberg, R.S., Bar-Haim, E., Mader, R., Eisenbach, L., and Mandelboim, O. (2002). CD66a interactions between human melanoma and NK cells: a novel class I MHC-independent inhibitory mechanism of cytotoxicity. Journal of immunology 168, 2803–2810.

    CAS  Google Scholar 

  84. Thies, A., Moll, I., Berger, J., Wagener, C., Brummer, J., Schulze, H.J., Brunner, G., and Schumacher, U. (2002). CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. Journal of clinical oncology 20, 2530–2536.

    PubMed  CAS  Google Scholar 

  85. Stern, N., Markel, G., Arnon, T.I., Gruda, R., Wong, H., Gray-Owen, S.D., and Mandelboim, O. (2005). Carcinoembryonic antigen (CEA) inhibits NK killing via interaction with CEA-related cell adhesion molecule 1. Journal of immunology 174, 6692–6701.

    CAS  Google Scholar 

  86. Stern-Ginossar, N., Nedvetzki, S., Markel, G., Gazit, R., Betser-Cohen, G., Achdout, H., Aker, M., Blumberg, R.S., Davis, D.M., Appelmelk, B., and Mandelboim, O. (2007). Intercellular transfer of carcinoembryonic antigen from tumor cells to NK cells. Journal of Immunology 179, 4424–34.

    CAS  Google Scholar 

  87. Markel, G., Seidman, R., Stern, N., Cohen-Sinai, T., Izhaki, O., Katz, G., Besser, M., Treves, A.J., Blumberg, R.S., Loewenthal, R., et al. (2006). Inhibition of human tumor-infiltrating lymphocyte effector functions by the homophilic carcinoembryonic cell adhesion molecule 1 interactions. Journal of immunology 177, 6062–6071.

    CAS  Google Scholar 

  88. Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L., and Yokoyama, W.M. (2000). In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proceedings of the national academy of sciences of the United States of America 97, 2731–2736.

    PubMed  CAS  Google Scholar 

  89. Kim, S., Song, Y.J., Higuchi, D.A., Kang, H.P., Pratt, J.R., Yang, L., Hong, C.M., Poursine-Laurent, J., Iizuka, K., French, A.R., et al. (2006). Arrested natural killer cell development associated with transgene insertion into the Atf  2 locus. Blood 107, 1024–1030.

    PubMed  CAS  Google Scholar 

  90. Orange, J.S. (2006). Human natural killer cell deficiencies. Current opinion in allergy and clinical immunology 6, 399–409.

    PubMed  Google Scholar 

  91. Orange, J.S. and Ballas, Z.K. (2006). Natural killer cells in human health and disease. Clinical Immunology 118, 1–10.

    PubMed  CAS  Google Scholar 

  92. Jeong, W.I., Park, O., Radaeva, S., and Gao, B. (2006). STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44, 1441–1451.

    PubMed  CAS  Google Scholar 

  93. Kottilil, S., Shin, K., Jackson, J.O., Reitano, K.N., O’Shea, M.A., Yang, J., Hallahan, C.W., Lempicki, R., Arthos, J., and Fauci, A.S. (2006). Innate immune dysfunction in HIV infection: effect of HIV envelope-NK cell interactions. Journal of immunology 176, 1107–1114.

    CAS  Google Scholar 

  94. Lucia, B., Jennings, C., Cauda, R., Ortona, L., and Landay, A.L. (1995). Evidence of a selective depletion of a CD16+ CD56+ CD8+ natural killer cell subset during HIV infection. Cytometry 22, 10–15.

    PubMed  CAS  Google Scholar 

  95. Richards, J.O., Chang, X., Blaser, B.W., Caligiuri, M.A., Zheng, P., and Liu, Y. (2006). Tumor growth impedes natural-killer-cell maturation in the bone marrow. Blood 108, 246–252.

    PubMed  CAS  Google Scholar 

  96. Kashii, Y., Giorda, R., Herberman, R.B., Whiteside, T.L., and Vujanovic, N.L. (1999). Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. Journal of immunology 163, 5358–5366.

    CAS  Google Scholar 

  97. Yuen, M.F., Hughes, R.D., Heneghan, M.A., Langley, P.G., and Norris, S. (2001). Expression of Fas antigen (CD95) in peripheral blood lymphocytes and in liver-infiltrating, cytotoxic lymphocytes in patients with hepatocellular carcinoma. Cancer 92, 2136–2141.

    PubMed  CAS  Google Scholar 

  98. Kim, R., Emi, M., Tanabe, K., Uchida, Y., and Toge, T. (2004). The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer 100, 2281–2291.

    PubMed  CAS  Google Scholar 

  99. Zalcenstein, A., Stambolsky, P., Weisz, L., Muller, M., Wallach, D., Goncharov, T.M., Krammer, P.H., Rotter, V., and Oren, M. (2003). Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22, 5667–5676.

    PubMed  CAS  Google Scholar 

  100. Ivanov, V.N., Krasilnikov, M., and Ronai, Z. (2002). Regulation of Fas expression by STAT3 and c-Jun is mediated by phosphatidylinositol 3-kinase-AKT signaling. The Journal of biological chemistry 277, 4932–4944.

    PubMed  CAS  Google Scholar 

  101. Pikarsky, E., and Ben-Neriah, Y. (2006). NF-kappaB inhibition: a double-edged sword in cancer? European journal of cancer 42, 779–784.

    PubMed  CAS  Google Scholar 

  102. Gray-Schopfer, V.C., Karasarides, M., Hayward, R., and Marais, R. (2007). Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer research 67, 122–129.

    PubMed  CAS  Google Scholar 

  103. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer research 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  104. Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of leukocyte biology 69, 522–530.

    PubMed  CAS  Google Scholar 

  105. Hellstrand, K. (2003). Melanoma immunotherapy: a battle against radicals? Trends in immunology 24, 232–233; author reply 234.

    Google Scholar 

  106. Nakagomi, H., Petersson, M., Magnusson, I., Juhlin, C., Matsuda, M., Mellstedt, H., Taupin, J.L., Vivier, E., Anderson, P., and Kiessling, R. (1993). Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma. Cancer research 53, 5610–5612.

    PubMed  CAS  Google Scholar 

  107. Fink, T., Ebbesen, P., Koppelhus, U., and Zachar, V. (2003). Natural killer cell-mediated basal and interferon-enhanced cytotoxicity against liver cancer cells is significantly impaired under in vivo oxygen conditions. Scandinavian journal of immunology 58, 607–612.

    PubMed  CAS  Google Scholar 

  108. Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T.I., Manaster, I., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature medicine 12, 1065–1074.

    PubMed  CAS  Google Scholar 

  109. de Visser, K.E., Eichten, A., and Coussens, L.M. (2006). Paradoxical roles of the immune system during cancer development. Nature reviews cancer 6, 24–37.

    PubMed  Google Scholar 

  110. Vitale, C., Chiossone, L., Cantoni, C., Morreale, G., Cottalasso, F., Moretti, S., Pistorio, A., Haupt, R., Lanino, E., Dini, G., et al. (2004). The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity. European journal of immunology 34, 3028–3038.

    PubMed  CAS  Google Scholar 

  111. Chiesa, M.D., Carlomagno, S., Frumento, G., Balsamo, M., Cantoni, C., Conte, R., Moretta, L., Moretta, A., and Vitale, M. (2006). The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118–4125.

    PubMed  Google Scholar 

  112. Mehrotra, P.T., Donnelly, R.P., Wong, S., Kanegane, H., Geremew, A., Mostowski, H.S., Furuke, K., Siegel, J.P., and Bloom, E.T. (1998). Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. Journal of immunology 160, 2637–2644.

    CAS  Google Scholar 

  113. Moreau, P., Adrian-Cabestre, F., Menier, C., Guiard, V., Gourand, L., Dausset, J., Carosella, E.D., and Paul, P. (1999). IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. International immunology 11, 803–811.

    PubMed  CAS  Google Scholar 

  114. Gonen-Gross, T., Achdout, H., Gazit, R., Hanna, J., Mizrahi, S., Markel, G., Goldman-Wohl, D., Yagel, S., Horejsi, V., Levy, O., et al. (2003). Complexes of HLA-G protein on the cell surface are important for leukocyte Ig-like receptor-1 function. Journal of immunology 171, 1343–1351.

    CAS  Google Scholar 

  115. Fiorentino, D.F., Zlotnik, A., Vieira, P., Mosmann, T.R., Howard, M., Moore, K.W., and O’Garra, A. (1991). IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. Journal of immunology 146, 3444–3451.

    CAS  Google Scholar 

  116. Mocellin, S., Ohnmacht, G.A., Wang, E., and Marincola, F.M. (2001). Kinetics of cytokine expression in melanoma metastases classifies immune responsiveness. International journal of cancer 93, 236–242.

    CAS  Google Scholar 

  117. Cai, G., Kastelein, R.A., and Hunter, C.A. (1999). IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. European journal of immunology 29, 2658–2665.

    PubMed  CAS  Google Scholar 

  118. Lauw, F.N., Pajkrt, D., Hack, C.E., Kurimoto, M., van Deventer, S.J., and van der Poll, T. (2000). Proinflammatory effects of IL-10 during human endotoxemia. Journal of immunology 165, 2783–2789.

    CAS  Google Scholar 

  119. Salazar-Onfray, F., Petersson, M., Franksson, L., Matsuda, M., Blankenstein, T., Karre, K., and Kiessling, R. (1995). IL-10 converts mouse lymphoma cells to a CTL-resistant, NK-sensitive phenotype with low but peptide-inducible MHC class I expression. Journal of immunology 154, 6291–6298.

    CAS  Google Scholar 

  120. Huang, S., Ullrich, S.E., and Bar-Eli, M. (1999). Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. Journal of interferon & cytokine research 19, 697–703.

    CAS  Google Scholar 

  121. Kundu, N., Beaty, T.L., Jackson, M.J., and Fulton, A.M. (1996). Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. journal of the national cancer institute 88, 536–541.

    PubMed  CAS  Google Scholar 

  122. Zheng, L.M., Ojcius, D.M., Garaud, F., Roth, C., Maxwell, E., Li, Z., Rong, H., Chen, J., Wang, X.Y., Catino, J.J., and King, I. (1996). Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. The journal of experimental medicine 184, 579–584.

    PubMed  CAS  Google Scholar 

  123. Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K., and Flavell, R.A. (2006). Transforming growth factor-beta regulation of immune responses. Annual review of immunology 24, 99–146.

    PubMed  CAS  Google Scholar 

  124. Bellone, G., Aste-Amezaga, M., Trinchieri, G., and Rodeck, U. (1995). Regulation of NK cell functions by TGF-beta 1. Journal of immunology 155, 1066–1073.

    CAS  Google Scholar 

  125. Ortaldo, J.R., Mason, A.T., O’Shea, J.J., Smyth, M.J., Falk, L.A., Kennedy, I.C., Longo, D.L., and Ruscetti, F.W. (1991). Mechanistic studies of transforming growth factor-beta inhibition of IL-2-dependent activation of CD3- large granular lymphocyte functions. Regulation of IL-2R beta (p75) signal transduction. Journal of immunology 146, 3791–3798.

    CAS  Google Scholar 

  126. Rook, A.H., Kehrl, J.H., Wakefield, L.M., Roberts, A.B., Sporn, M.B., Burlington, D.B., Lane, H.C., and Fauci, A.S. (1986). Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. Journal of immunology 136, 3916–3920.

    CAS  Google Scholar 

  127. Torre-Amione, G., Beauchamp, R.D., Koeppen, H., Park, B.H., Schreiber, H., Moses, H.L., and Rowley, D.A. (1990). A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proceedings of the national academy of sciences of the United States of America 87, 1486–1490.

    PubMed  CAS  Google Scholar 

  128. Laouar, Y., Sutterwala, F.S., Gorelik, L., and Flavell, R.A. (2005). Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nature immunology 6, 600–607.

    PubMed  CAS  Google Scholar 

  129. Yu, J., Wei, M., Becknell, B., Trotta, R., Liu, S., Boyd, Z., Jaung, M.S., Blaser, B.W., Sun, J., Benson, D.M., Jr., et al. (2006). Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 24, 575–590.

    PubMed  CAS  Google Scholar 

  130. Townsend, M.J., Weinmann, A.S., Matsuda, J.L., Salomon, R., Farnham, P.J., Biron, C.A., Gapin, L., and Glimcher, L.H. (2004). T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20, 477–494.

    PubMed  CAS  Google Scholar 

  131. Castriconi, R., Cantoni, C., Della Chiesa, M., Vitale, M., Marcenaro, E., Conte, R., Biassoni, R., Bottino, C., Moretta, L., and Moretta, A. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proceedings of the national academy of sciences of the United States of America 100, 4120–4125.

    PubMed  CAS  Google Scholar 

  132. Fernandez, N.C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L. (1999). Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature medicine 5, 405–411.

    PubMed  CAS  Google Scholar 

  133. Borg, C., Terme, M., Taieb, J., Menard, C., Flament, C., Robert, C., Maruyama, K., Wakasugi, H., Angevin, E., Thielemans, K., et al. (2004). Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. The journal of clinical investigation 114, 379–388.

    PubMed  CAS  Google Scholar 

  134. Mailliard, R.B., Alber, S.M., Shen, H., Watkins, S.C., Kirkwood, J.M., Herberman, R.B., and Kalinski, P. (2005). IL-18-induced CD83+ CCR7+ NK helper cells. The journal of experimental medicine 202, 941–953.

    PubMed  CAS  Google Scholar 

  135. Carbone, E., Terrazzano, G., Ruggiero, G., Zanzi, D., Ottaiano, A., Manzo, C., Karre, K., and Zappacosta, S. (1999). Recognition of autologous dendritic cells by human NK cells. European journal of immunology 29, 4022–4029.

    PubMed  CAS  Google Scholar 

  136. Pende, D., Castriconi, R., Romagnani, P., Spaggiari, G.M., Marcenaro, S., Dondero, A., Lazzeri, E., Lasagni, L., Martini, S., Rivera, P., et al. (2006). Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030–2036.

    PubMed  CAS  Google Scholar 

  137. Spaggiari, G.M., Carosio, R., Pende, D., Marcenaro, S., Rivera, P., Zocchi, M.R., Moretta, L., and Poggi, A. (2001). NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. European journal of immunology 31, 1656–1665.

    PubMed  CAS  Google Scholar 

  138. Fauriat, C., Moretta, A., Olive, D., and Costello, R.T. (2005). Defective killing of dendritic cells by autologous natural killer cells from acute myeloid leukemia patients. Blood 106, 2186–2188.

    PubMed  CAS  Google Scholar 

  139. Della Chiesa, M., Vitale, M., Carlomagno, S., Ferlazzo, G., Moretta, L., and Moretta, A. (2003). The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. European journal of immunology 33, 1657–1666.

    PubMed  Google Scholar 

  140. Moretta, L., Ferlazzo, G., Bottino, C., Vitale, M., Pende, D., Mingari, M.C., and Moretta, A. (2006). Effector and regulatory events during natural killer-dendritic cell interactions. Immunological reviews 214, 219–228.

    PubMed  CAS  Google Scholar 

  141. Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., and Moretta, A. (2005). IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. Journal of immunology 174, 3992–3998.

    CAS  Google Scholar 

  142. Vitale, M., Della Chiesa, M., Carlomagno, S., Pende, D., Arico, M., Moretta, L., and Moretta, A. (2005). NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood 106, 566–571.

    PubMed  CAS  Google Scholar 

  143. Vitale, M., Della Chiesa, M., Carlomagno, S., Romagnani, C., Thiel, A., Moretta, L., and Moretta, A. (2004). The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. European journal of immunology 34, 1715–1722.

    PubMed  CAS  Google Scholar 

  144. Adam, C., King, S., Allgeier, T., Braumuller, H., Luking, C., Mysliwietz, J., Kriegeskorte, A., Busch, D.H., Rocken, M., and Mocikat, R. (2005). DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 106, 338–344.

    PubMed  CAS  Google Scholar 

  145. Onizuka, S., Tawara, I., Shimizu, J., Sakaguchi, S., Fujita, T., and Nakayama, E. (1999). Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer research 59, 3128–3133.

    PubMed  CAS  Google Scholar 

  146. Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999). Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. Journl of immunology 163, 5211–5218.

    CAS  Google Scholar 

  147. Ghiringhelli, F., Puig, P.E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. The Journal of experimental medicine 202, 919–929.

    PubMed  CAS  Google Scholar 

  148. Nishikawa, H., Kato, T., Tawara, I., Takemitsu, T., Saito, K., Wang, L., Ikarashi, Y., Wakasugi, H., Nakayama, T., Taniguchi, M., et al. (2005). Accelerated chemically induced tumor development mediated by CD4+ CD25+ regulatory T cells in wild-type hosts. Proceedings of the national academy of sciences of the United States of America 102, 9253–9257.

    PubMed  CAS  Google Scholar 

  149. Trzonkowski, P., Mysliwska, J., Szmit, E., Wieckiewicz, J., Lukaszuk, K., Brydak, L.B., Machala, M., and Mysliwski, A. (2003). Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination–an impact of immunosenescence. Vaccine 21, 3826–3836.

    PubMed  CAS  Google Scholar 

  150. Wolf, A.M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., and Grubeck-Loebenstein, B. (2003). Increase of regulatory T cells in the peripheral blood of cancer patients. Clinical cancer research 9, 606–612.

    PubMed  Google Scholar 

  151. Ghiringhelli, F., Menard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P.E., Novault, S., Escudier, B., Vivier, E., et al. (2005). CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. The journal of experimental medicine 202, 1075–1085.

    PubMed  CAS  Google Scholar 

  152. Morse, M.A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T.M., Valente, N., Shreeniwas, R., Sutton, M.A., Delcayre, A., et al. (2005). A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of translational medicine 3, 9.

    PubMed  Google Scholar 

  153. Smyth, M.J., Teng, M.W., Swann, J., Kyparissoudis, K., Godfrey, D.I., and Hayakawa, Y. (2006). CD4+ CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. Journal of immunology 176, 1582–1587.

    CAS  Google Scholar 

  154. Barao, I., Hanash, A.M., Hallett, W., Welniak, L.A., Sun, K., Redelman, D., Blazar, B.R., Levy, R.B., and Murphy, W.J. (2006). Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+ CD25+ regulatory T cells. Proceedings of the national academy of sciences of the United States of America 103, 5460–5465.

    PubMed  CAS  Google Scholar 

  155. Oida, T., Zhang, X., Goto, M., Hachimura, S., Totsuka, M., Kaminogawa, S., and Weiner, H.L. (2003). CD4+ CD25- T cells that express latency-associated peptide on the surface suppress CD4+ CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. Journal of immunology 170, 2516–2522.

    CAS  Google Scholar 

  156. Liu, C., Yu, S., Kappes, J., Wang, J., Grizzle, W.E., Zinn, K.R., and Zhang, H.G. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor bearing host. Blood.

    Google Scholar 

  157. Gorelik, E., Bere, W.W., and Herberman, R.B. (1984). Role of NK cells in the antimetastatic effect of anticoagulant drugs. International journal of cancer 33, 87–94.

    CAS  Google Scholar 

  158. Rickles, F.R., and Edwards, R.L. (1983). Activation of blood coagulation in cancer: Trousseau’s syndrome revisited. Blood 62, 14–31.

    PubMed  CAS  Google Scholar 

  159. Gunji, Y. and Gorelik, E. (1988). Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer research 48, 5216–5221.

    PubMed  CAS  Google Scholar 

  160. Nierodzik, M.L., Plotkin, A., Kajumo, F., and Karpatkin, S. (1991). Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. The journal of clinical investigation 87, 229–236.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Gazit, R., Mandelboim, O. (2008). Natural Killer Cells at the Tumors Microenvironment. In: Yefenof, E. (eds) Innate and Adaptive Immunity in the Tumor Microenvironment. The Tumor Microenvironment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6750-1_9

Download citation

Publish with us

Policies and ethics