Skip to main content

Local Tumor Growth and Spontaneous Systemic T Cell Responses in Cancer Patients: A Paradox and Puzzle

  • Chapter
Innate and Adaptive Immunity in the Tumor Microenvironment

Part of the book series: The Tumor Microenvironment ((TTME,volume 1))

We describe and discuss the paradox situation that in many cancer patients functional antitumor memory T cells can be detected in their bone marrow which coexist with a growing tumor in the periphery. This phenomenon, known as “concomitant immunity” suggests that the tumor and its microenvironment prevent systemic antitumor immunity to become effective. Strategies of intervention at the tumor microenvironment are being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. van der Bruggen, C. Traversari, P.Chomez, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647, (1991).

    Article  PubMed  Google Scholar 

  2. D. Nagorsen, C. Scheibenbogen, F.M. Marincola, et al. Natural T cell immunity against cancer. Clin Cancer Res 9, 4296–4303 (2003).

    PubMed  CAS  Google Scholar 

  3. R.M. Steinmann., H. Hemmi. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311, 17–58 (2006).

    Google Scholar 

  4. H. Wagner. Endogenous TLR ligands and autoimmunity. Adv Immunol 91, 159–173 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. P.D. Lee, C. Yee, P.A. Savage, et al. Charcterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med 5, 677–685 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. K. Khazaie, S. Prifti, P. Beckhove, A. Griesbach, S. Russell, M. Collins, V. Schirrmacher. Persistence of dormant tumor-cells in the bone marrow of tumor-cell-vaccinated mice correlates with long term immunological protection. Proc Natl Acad Sci 91, 7430–7434 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. M. Müller, F. Gounari, S. Prifti, H.J. Hacker, V. Schirrmacher, K. Khazaie. EblacZ tumor dormancy in bone marrow and lymph nodes: active control at proliferating tumor cells by CD8+ immune T cells. Cancer Res 58, 5439–5446 (1998).

    PubMed  Google Scholar 

  8. M. Feuerer, P. Beckhove, L. Bai, et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 4, 452–458 (2001).

    Article  Google Scholar 

  9. J. Müller-Berghaus, K. Ehlert, S. Ugurel, V. Umansky, V. Schirrmacher, P. Beckhove, D. Schadendorf. Melanoma-reactive T cells in the bone marrow of melanoma patients: association with disease stage. Cancer Res 66(12), 5997–6001 (2006).

    Article  PubMed  Google Scholar 

  10. F. Schmitz-Winnenthal, C. Volk, K. Z’graggen, L. Galindo, D. Nummer, Y. Ziouta, M. Bucur, J. Weitz, V. Schirrmacher, M.W. Büchler, P. Beckhove. High frequencies of functional tumor-reactive T cells in bone marrow and blood marrow and blood of pancreatic cancer patients. Cancer Res 65(21), 10079–10087 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. F.H. Schmitz-Winnenthal, L.V. Galindo Escobedo, P. Beckhove, V. Schirrmacher, M. Bucur, Y. Ziouta, C. Volk, B. Schmied, M. Koch, D. Antolovic, J. Weitz, M.W. Büchler, K. Z’graggen. Specific immune recognition of pancreatic carcinoma by patient-derived CD4 and CD8 T cells and its improvement by interferon gamma. Int J Oncol 28(6), 1419–1428 (2006).

    PubMed  CAS  Google Scholar 

  12. C. Choi, M. Witzens, M. Bucur, M. Feuerer, N. Sommerfeldt, A. Trojan, A. Ho, V. Schirrmacher, H. Goldschmidt, P. Beckhove. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of multiple myeloma patients. Blood 105(5), 2132–2134 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. P. Beckhove, M. Feuerer, M. Dolenc, F. Schuetz, C. Choi, N. Sommerfeldt, J. Schwendemann, K. Ehlert, P. Altevogt, G. Bastert, V. Schirrmacher, V. Umansky. Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autolgous tumors. J Clin Invest 114, 67–76 (2004).

    PubMed  CAS  Google Scholar 

  14. N. Sommerfeldt, F. Schütz, C. Sohn, J. Förster, V. Schirrmacher, P. Beckhove. The shaping of a polyvalent and highly individual T cell repertoire in the bone marrow of breast cancer patients.Cancer Res 66(16), 8258–2365 (2006).

    Google Scholar 

  15. M. Feuerer, P. Beckhove, N. Garbi, Y. Mahnke, A. Limmer, M. Hommel, G.J., Hämmerling, B. Kyewski, A. Hamann, V. Umansky, V. Schirrmacher. Bone marrow as a priming site for T cell responses to blood-borne antigen. Nat Med 9, 1151–1157 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. L.L. Cavanagh, R. Bonasio, I.B. Mazo, et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 10, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  17. Y.D.Mahnke, J. Schwendemann, P. Beckhove, V. Schirrmacher. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumor cells. Immunology 115, 325–336 (2005).

    Google Scholar 

  18. K. Noonan, W. Matsui, P. Serafini, et al. Activated marrow infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 65, 2026–2034 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. S. Braun, F.D. Vogl, B. Naume, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353, 793–802 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. V. Schirrmacher. T-cell immunity in the induction and maintenance of a tumor dormant state. Sem Cancer Biol 11, 285 (2001).

    Google Scholar 

  21. L. Bai, P. Beckhove, M. Feuerer, V. Umansky, C. Choi, E.F. Solomayer, I.J. Diel, V. Schirrmacher, Cognate interactions between memory T cells and tumor antigen presenting dendritic cells from bone marrow of breast cancer patients: bi-directional cell stimulation survival and anti-tumor activity in vivo. Int J Cancer 103, 73–83 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. G. Angelini, S. Gardella, M. Ardy, et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. PNAS 99, 1491–1496 (2002).

    Google Scholar 

  23. D. Nagorsen, C. Scheibenbogen, A. Letsch, et al. T cell responses against tumor associated antigens and prognosis in colorectal cancer patients. J Transl Med 3, 3 (2005).

    Google Scholar 

  24. P.G. Fournier, J.M. Chirgwin, T.A. Guise. New insights into the vicious circle of bone metastases. Curr Opin Rheumatol 18, 396–404 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. R. Ganss, E. Ryschisch, E. Klar, et al. Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62, 1462–1470 (2002).

    PubMed  CAS  Google Scholar 

  26. M. M. Berger, G. Bergers, B. Arnold, et al. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. B Blood 105, 1094–1101 (2005).

    Article  CAS  Google Scholar 

  27. Q. Q. Le, H. Cao, D. Nelson, et al. Galectin -1:A link between tumor hypoxia and tumor immune privilege. J Clin Oncol 23, 8932–8941 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Kawakami, N. Dang, X. Wang, et al. Recognition of shared melanoma antigens in association with major HLA-A alleles by tumour-infiltrating lymphocytes from 123 patients with melanoma. J Immunother 23, 17–27 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. H. H. Benlalam, N. Labarriere, B. Linard, et al. Comprehensive analysis of the frequency of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol 31, 2007–2015 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. P.P.F. Robbins, M. El-Gamil, Y.F. Li, et al. Multiple HLA-II-restricted melanocyte differentiation antigens are recognized by tumour-infiltrating lymphocytes from a patient with melanoma. J Immunol 169, 6036–6047 (2002).

    PubMed  CAS  Google Scholar 

  31. S. Seiter, V. Monsurro, M.B. Nielsen, et al. Frequency of MART-1/MelanA and gp100/PMel17-specific T cells in tumnor metastases and cultured tumour-infiltrating lymphocytes. J Immunother 25, 252–263 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. M.M.T. Spiotto, H. Schreiber. Rapid destruction of the tumor microenvironment by CTLs recognizing cancer specific antigens cross-presented by stromal cells. Cancer Immun 5, 8 (2005).

    Google Scholar 

  33. K.K. Hayashi, K. Yonamine, K. Masuko-Hongo, et al. Clonal expansion of T cells that are specific for autologous ovarian tumour among tumour-infiltrating T cells in humans. Gynecol Oncol 74, 86–92 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. M. Koch, P. Beckhove, J. op den Winkel, et al. Tumor infiltrating T-lymphocytes in colorectal cancer: tumor-selective activation and cytotoxic activity in situ. Ann Surg 244, 986–992 (2006).

    Article  PubMed  Google Scholar 

  35. J.J. Galon, A. Costes, F. Sanchez-Cabo, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. F.F. Pages, A. Berger, M. Camus, et al. Effector memory T cells, early metastasis and survival in colorectal cancer. N Eng J Med 353, 2654–2666 (2005).

    Article  CAS  Google Scholar 

  37. T.T. Alvaro, M. Lejeune, M-T. Salvado, et al. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. JCO 24, 5350–5357 (2006).

    Google Scholar 

  38. X.X. Yan, R. Orentas, B. Johnson. Tumor-derived macrophage migration inhibitory factor (MIF) inhibits T lymphocyte activation. Cytokine 33, 188–198 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. E. Sato, S.H. Olson, J. Ahn, et al. Intraepithelial CD8 TIL and a high CD8+ /regulatory T cell ratio are associated with a favourable prognosis in ovarian cancer. PNAS 102, 18538–18543 (2005).

    Google Scholar 

  40. Y.Y. Xu, S.H. Kroft, R.W. McKenna, et al. Prognostic significance of tumour infiltrating T lymphocytes and T cell subsets in de novo diffuse large B cell lymphoma: a multiparameter flow cytometry study. Br J Haematol 112, 945–949 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. J.B. Haanen, A. Baars, R. Gomez, et al. Melanoma specific TIL but not circulating melanoma specific TIL predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother 55, 451–458 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. J. Herbert III Zeh, T. Michale Lotze. Addicted to death: Invasive cancer and the immune response to unscheduled cell death. J Immunotherapy 28(1), 1–9 (2005).

    Google Scholar 

  43. N. Sommerfeldt, P. Beckhove, Y. Ge, et al. Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66, 7716–7723 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. M.R. Shurin, G.V. Shurin, A. Lokshin, et al. Intratumoral cytokines, chemokines/growth factors and tumour infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25, 333–356 (2006).

    Google Scholar 

  45. D.R. Roach, A.G.D. Bean, C. Demangel, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation and clearance of mycobacterial infection. J Immunol 168, 4620–4627 (2002).

    PubMed  CAS  Google Scholar 

  46. L. Broderick, R.B. Bankert. Memory T cells in human tumor and chronic inflammatory microenvironments: sleeping beauties re-awakened by a cytokine kiss. Immunol Invest 35, 419–436 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. F. De Paola, R. Ridolfi, A. Riccobon, et al. Restored T cell activation mechanisms in human tumour infiltrating lymphocytes and colorectal carcinomas after exposure to interleukin-2. Br J Cancer 88, 320–326 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. S.S. Radoja, M. Saio, D. Schaer, et al. CD8+ tumour infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 167, 5042–5051 (2001).

    PubMed  CAS  Google Scholar 

  49. T.T.F. Gajewski, Y. Meng, C. Blank, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213, 131–145 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. X.X. Yan, R.J. Orentas, B.D. Johnson. Tumor-derived migration inhibitory factor (MIF) inhibits T lymphocyte activation. Cytokine 33, 188–198 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. A.A.G. Jarnicki, J. Lysaght, S. Todryk, et al. Suppression of antitumor immunity by IL-10 and TGFß producing T cell infiltrating the growing tumour: influence of tumour microenvironment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177, 896–904 (2006).

    PubMed  CAS  Google Scholar 

  52. Y. Luo, H. Zhou, J. Krueger, et al. Targeting tumor-associated macrophages as a novel strategy against breast cacner. JCI 116, 2132–2141(2006).

    Google Scholar 

  53. L. Broderick, S. Yokota, J. Reineke, et al. Human CD4 effector memory T cells persisting in the microenvironment of lung cancer xenografts are activated by local delivery of IL-12 to proliferate, produce IFN-y and eradicate tumor cells. J Immunol 174, 898–906 (2005).

    PubMed  CAS  Google Scholar 

  54. L.O. Broderick, S.P. Brooks, H. Takita, et al. IL-12 reverses anergy to T cell receptor triggering in human lung tumour-associated memory T cells. Clin Immunol 118, 159–169 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. Y.W. Hsiao, K.W. Liao, S.W. Hung, et al. Tumour infiltrating lymphocytes secretion of IL-6 antagonizes tumour-derived TGFß1 and restores the lymphokine-activated killing activity. J Immunol 172, 1508–1514 (2004).

    PubMed  CAS  Google Scholar 

  56. F.M. Marincola, E. Wang, M. Herlyn, B. Seliger, S. Ferrone. Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol 24, 335–342 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. V. Monsurro, E. Wang, M.C. Panelli, D. Nagorsen, P. Jin, Z. Katia, et al. Active-specific immunization against melanoma: is the problem at the receiving end? Semin Biol 13, 473–480 (2003).

    Article  CAS  Google Scholar 

  58. A.B. Frey, Monu Ngozi. Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol 79, 652–662 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. L. Burdelaya, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol 174, 3925–3931 (2005).

    Google Scholar 

  60. J.J. Kobie, R.S. Wu, R.A. Kurt, et al. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63, 1860–1864 (2003).

    PubMed  CAS  Google Scholar 

  61. B. Washburn, V. Schirrmacher. Human tumor cell infection by Newcastle Disease Virus leads up to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol 21, 85–93 (2002).

    PubMed  CAS  Google Scholar 

  62. C. Ertel, N.S. Millar, P.T. Emmerson, V. Schirmracher, P. von Hoegen. Viral hemagglutinin augments peptide specific cytotoxic T-cell responses. Eur J Immunol 23, 2592 (1993).

    Google Scholar 

  63. C. Haas, C. Ertel, R. Gerhards, V. Schirrmacher. Introduction of adhesive and costimulatory immune functions into tumor cells by inflection with Newcastle disease virus. Int J Oncol 13, 1105 (1998).

    Google Scholar 

  64. C.C. Termeer, V. Schirrmacher, E.B. Bröcker, J.C. Becker. Newcastle disease virus infection induces B7–1/B7–2 independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Ther 7, 316 (2000).

    Google Scholar 

  65. V. Schirrmacher. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved anti-tumor immune memory. Cancer Immunol. Immunother 54(6) (Apr.), 587–598 (2005).

    Google Scholar 

  66. P. Yu, Y. Lee, W. Liu, et al. Priming of naïve T cells inside tumors leads to eradication of established tumors. Nat Immunol 5, 141–149 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. B. Aggarwal. Signalling pathways of the TNF superfamily: a double edged sword. Nat Rev Immunol 3, 745–756 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. G. Dranoff. GM-CSF-secreting melanoma vaccines. Oncogene 22, 3188–3192 (2003).

    Google Scholar 

  69. L.M. Liau, R.M. Prins, S.M. Kiertscher, S.K. Odesa, T.J. Kremen, A.J. Giovannone, J.W. Lin, D.J. Chute, P.S. Mischel, T.F. Cloughesy, M.D. Roth. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15), 5515–5525 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. Y. Peng, Y. Laouar, M.O. Li, E.A. Green, R.A. Flavell. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 101, 4572–4577 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. L. Gorelik, R.A Flavell. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signalling in T cells. Nat Med 7, 1118–1122 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. C.-P. Mao, C.-F. Hung, T.-C. Wu. Immunotherapeutic strategies employing RNA interference technology for the control of cancers. J Biomedical Science DOI 10.1007/s11373–006-9131–5 (2006).

    Google Scholar 

  73. S. Sakaguchi. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531–562 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. M.J. Turk, J.A. Guevara-Patino, G.A. Rizzuto, M.E. Engelhorn, S. Sakaguchi, A.N. Houghton. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200, 771–782 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. F.M. Foss. Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann NY Acad Sci 941, 166–176 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. J. Dannull, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115, 3623–3633 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. I. Lee, L. Wang, A.D. Wells, M.E. Dorf, E. Ozkaynak, W.W. Hancock. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med 201, 1037–1044 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. V.A. Boussiotis, et al. Prevention of T cell anergy by signalling through the gamma c chain of the IL-2 receptor. Science 266, 1039–1042 (1994).

    Article  PubMed  CAS  Google Scholar 

  79. R.M. Teague, et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12, 335–341 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. H.L. Kaufman, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest 115, 1903–1912 (2005).

    Article  PubMed  CAS  Google Scholar 

  81. H.L. Kaufmann, S. Cohen, K. Cheung, G. DeRaffele, J. Mitcham, D. Moroziewicz, J. Schlom, C. Hesdorffer. Local delivery of vaccinia virus expressing multiple costimulatory molecules for the treatment of established tumors. Hum Gene Ther 17(2), 239–244 (2006).

    Article  Google Scholar 

  82. H.L. Kaufman, G. DeRaffele, J. Divito, H. Horig, D. Lee, D. Panicali, M. Voulo. A phase I trial of intralesional rV-Tricom vaccine in the treatment of malignant melanoma. Hum Gene Ther 12(11), 1459–1480 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. C. Haas, M. Lulei, P. Fournier, A. Arnold, V. Schirrmacher. T-cell triggering by CD3- and CD28-binding molecules linked to a human virus-modified tumor cell vaccine. Vaccine 23, 2439–2453 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. C. Haas, M. Lulei, P. Fournier, A. Arnold, V. Schirrmacher. A tumor vaccine containing anti-CD3 and anti-CD28 bispecific antibodies triggers strong and durable anti-tumor activity in human lymphocytes. Int J Cancer 118(3) (Mar 1), 658–667 (2005).

    Google Scholar 

  85. G.G. Parmiani, C. Castelli, P. Dalerba, et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 94, 805–818 (2002).

    PubMed  CAS  Google Scholar 

  86. G.G. Zeng, Y. Li, M. El-Gamil, et al. Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 62, 3630–3535 (2002).

    PubMed  CAS  Google Scholar 

  87. Y.Y. Kawarada, R. Ganss, N. Garbi, T. Sacher, B. Arnold, G.J. Hämmerling. NK and CD8+ T cell mediated eradication of established tumors by peritumoral injections of CpG-oligodeoxynucleotides. J Immunol 167, 5247–5253 (2001).

    PubMed  CAS  Google Scholar 

  88. C.C. Fiola, B. Peeters, P. Fournier, A. Arnold, M. Bucur, V. Schirrmacher. Tumor selective replication of Newcastle Disease Virus: Association with defects of tumor cells in antiviral defence. Int J Cancer 119, 328–338 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. P.P. Fournier, J. Zeng, V. Schirrmacher. Two ways to induce innate immune responses in human PBMCs: paracrine stimulation of IFN-a responses by viral protein or dsRNA. Int J Oncol 23, 673–680 (2003).

    PubMed  CAS  Google Scholar 

  90. A.A. Pichlmair, O. Schulz, C.P. Tan, T.I. Näslund, P. Liljeström, Weber Friedemann, C. Reis e Sousa. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. D.D. Stetson, R. Metzhitov. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. M.M. Mohty, A. Viall-Castellano, J.A. Nunes, D. Isnardon, D. Olive, B. Gaugler. IFN-alpha skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol 171(7), 3385–3393 (2003).

    PubMed  CAS  Google Scholar 

  93. M.M.T. Spiotto, H. Schreiber. Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun 5, 8 (2005).

    Google Scholar 

  94. B.B. Zhang, N.A. Bowerman, J.K. Salama, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204, 49–55 (2007).

    Article  PubMed  CAS  Google Scholar 

  95. S.S. Nair, D. Boczkowski, B. Moeller, M. Dewhirst, J. Vieweg, E. Gilboa. Synergy between tumor immunotherapy and anti-angiogenic therapy. Blood 102, 964–971 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. T.T. Kelly. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signalling and are potential targets for cancer therapy. Drug Resist Updat 8, 51–58 (2005).

    Article  PubMed  CAS  Google Scholar 

  97. S.S. Mocellin, C.R. Rossi, D. Nitti. Cancer vaccine development: on the way to break immune tolerance to malignant cells. Exp Cell Res 299, 267–278 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. C.C. Uyttenhove, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3 dioxygenase. Nat Med 9, 1269–1274 (2003).

    Article  PubMed  CAS  Google Scholar 

  99. P.P.C. Rodriguez, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64, 5839–5849 (2004).

    Article  PubMed  CAS  Google Scholar 

  100. B.B. Ahn, H. Ohshima. Suppression of intestinal polyposis in Apc (Min/+) mice by inhibiting nitric oxide production. Cancer Res 61, 8357–8360 (2001).

    PubMed  CAS  Google Scholar 

  101. S.S.S. Agarwala, M.H. Sabbagh. Histamine dihydrochloride: inhibiting oxidants and synergising IL-2 mediated immune activation in the tumor microenvironment. Expert Opin Biol Ther 1, 869–879 (2001).

    Article  PubMed  CAS  Google Scholar 

  102. C.C. Peyssonnaux, R.S. Johnson. An Unexpected Role for Hypoxic Response.Cell Cycle 3, 168–171 (2004).

    Google Scholar 

  103. V.V. Bocci, A. Larini, V. Micheli. Restoration of normoxia by ozone therapy may control neoplastic growth: a review and a working hypothesis. J Altern Complement Med 11(2), 257–265 (2005).

    Article  PubMed  Google Scholar 

  104. N.N. Senzer, S. Mani, A. Rosemurgy, et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol 22, 592–601 (2004).

    Article  PubMed  CAS  Google Scholar 

  105. J.J.L. Gulley, P.M. Arlen, N. Bastian, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11, 3353–3362 (2005).

    Article  PubMed  CAS  Google Scholar 

  106. C.C. Lurquin, B. Lethe, E. DePlaen, et al. Constrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 201, 249–257 (2005).

    Article  PubMed  CAS  Google Scholar 

  107. S.S. Demaria, N. Bhardwaj, W.H. McBride, S.C. Formenti. Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiation Oncology Biol Phys 63(3), 655–666 (2005).

    Google Scholar 

  108. E.E. Vorothnikova, R. Ivkov, A. Foreman, M. Tries, S.J. Braunhut. The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia. Int J Radiat Biol 82, 549–559 (2006).

    Article  CAS  Google Scholar 

  109. Q.Q. Chen, DT Fisher, K.A. Clancy, J.M. Gauguet, W.C. Wang, E. Unger, S. Rose-John, U.H. von Andrian, H. Baumann, S.S. Evans. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 7(12), 1299–1308 (2006).

    Article  PubMed  CAS  Google Scholar 

  110. B.B. Tang, L. Li, Z. Jiang, Y. Luan, D. Li, W. Zhang, E. Reed, Q.Q. Li. Characterization of the mechanisms of electrochemotherapy in an in vitro model for human cervical cancer. Int J Oncol 26(3), 703–711 (2005).

    PubMed  CAS  Google Scholar 

  111. Y.Y. Xin, F. Xue, B. Ge, F. Zhao, B. Shi, W. Zhang. Electrochemical treatment of lung cancer, Bioelectromagnetics 18, 8–13 (1997).

    Article  PubMed  CAS  Google Scholar 

  112. A.A. Loskog, H. Dzojic, S. Vikman, C. Ninalga, M. Essand, O. Korsgren, T.H. Totterman. Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor microenvironment. J Immunol 172, 7200–7205 (2004).

    PubMed  CAS  Google Scholar 

  113. I.I. Van Bruggen, D.J. Nelson, A.J. Currie, C. Jackaman, B.W.S. Robinson. Intratumoral Poly-N-acetyl glucosamine-based polymer matrix provokes a prolonged local inflammatory response that, when combined with IL-2, induces regression of malignant mesothelioma in a murine model. J Immunother 28, 359–367 (2005).

    Article  PubMed  Google Scholar 

  114. T.T.R. Sana, M.J. Janatpour, M. Sathe, L.M. McEvoy, T.K. McClanahan. Microarray analysis of primary endothelial cells challenged with different inflammatory and immune cytokines. Cytokine 29, 256–269 (2005).

    PubMed  CAS  Google Scholar 

  115. T.T. Lichtor, R.P. Glick. Cytokine immuno-gene therapy for treatment of brain tumors. J Neuro-Oncol 65, 247–259 (2003).

    Article  Google Scholar 

  116. E.E. Wang, L.D. Miller, G.A. Ohnmacht, et al. Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62, 3381–3386 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Beckhove, P., Schirrmacher, V. (2008). Local Tumor Growth and Spontaneous Systemic T Cell Responses in Cancer Patients: A Paradox and Puzzle. In: Yefenof, E. (eds) Innate and Adaptive Immunity in the Tumor Microenvironment. The Tumor Microenvironment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6750-1_3

Download citation

Publish with us

Policies and ethics