Newtonian Flow

  • H. Yamaguchi
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 85)


Boundary Layer Reynolds Number Velocity Profile Flat Plate Turbulent Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Recent development of Newtonian viscous fluid flow is well documented together with fundamental concepts in fluid mechanics, including the flow instability, in

  1. F.M. White, Viscous Fluid Flow(3rd Edition), McGraw Hill International, New York, 2006.Google Scholar
  2. F.S. Sherman, Viscous Flow, McGraw Hill Publishing Company, New York, 1990.zbMATHGoogle Scholar

The most classic text book in boundary layer theory is

  1. H. Schlichting, Boundary-Layer Theory (7th Edition 1979), McGraw-Hill book company Inc., New York, 1955.zbMATHGoogle Scholar
  2. L. Rosenhead, Laminar Boundary Layer, Oxford University, Oxford, Press, 1963.Google Scholar
  3. D. Meksyn, New Methods in Laminar Boundary Theory, Pergamon, London, 1961.Google Scholar

Basic treatment on incompressible viscous flows with details on dimensional analysis is found in

  1. R.L. Panton, Incompressible Flow (2nd Edition), John Willey & Sons, Inc., Hoboken, NJ, 1996.Google Scholar

Extensive literature review for developing flows are found in

  1. A.J. Word-Smith, Internal Fluid Flow, Clarendon Press, England, 1980.Google Scholar

Experimental techniques on Newtonian fluid flow and visualization methods are documented in

  1. W.J. Yang, Handbook of Flow Visualization, Hemisphere Publishing Corp., New York, 1989.Google Scholar

Flow phenomena, specific data, correlations and approximations referred in the text are presented in

  1. J. Boussinesq, Thiorie Analytique de la chaleur, 2, 172, Gauthier-Villars, Paris, 1903.Google Scholar
  2. P.L. Silveston, Warmedurchgang in waagerechten flüssigkeitsschichten, Part I Forsch. Ing. Wes. 24,29–32 and 59–69, 1958.Google Scholar
  3. H.S. Hele-Shaw, Investigation of the nature of surface resistance of water and of stream motion under certain experimental conditions, Frans. Inst. Naval Arch., 11, 1898.Google Scholar
  4. G.G. Stokes, Mathematical and physical papers I, 75, Trans. Camb. Soc., 8, 1845.Google Scholar
  5. C.W. Oseen, On the Stokes’ problem and on the fundamental problems of hydrodynamics (German), Ark. F. Mat. Astr. og Fys., 6 (29), 1910.Google Scholar
  6. J. Boussinesq, Comptes Reudus, 9, 1891.Google Scholar
  7. Prandtl-Tietjens, Hydro und Aeromechanics, Bd.II, 1931.Google Scholar
  8. R.K. Shah and A.L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978.Google Scholar
  9. J. Nikuradse, Strömungsgesetze in rauhen Rohen, Forsch. Arb. Ing.-Wes., (361), 1933.Google Scholar
  10. L. Prandtl, Über flussigkeitsbewegung bei sehr kleiner reibung. Verhundlungen des III. Internationalen Mathematiker-Kongrees, Heidelberg, 1904.Google Scholar
  11. L. Prandtl, Über flussigkeitsbewegung bei sehr kleiner reibung, Proc. Third Int. Math. Congr. Heidelberg (NACA Technical Memo.452 in English), 1908.Google Scholar
  12. L. Prandtl, Über die ausgebildete turblenz, Z. Angew. Math. Mech., 5, 1925.Google Scholar
  13. H. Blasius, Grenzschichten in flüssikeiten mit kleiner reibung, Z. Angew. Math. Phys., 56 [NACA Technical Memo.1256 in English], 1908.Google Scholar
  14. T. von Kàrmàn, Über den mechanismus des widerstandes, den ein bewegter Körger in einer flüssigkeit erzeugt, Nachr. Ges. Wiss. Göttingen Math. –Phys. Kl.II, 1921.Google Scholar
  15. H.W. Liepmann, Investigation on curved boundary layer stability and transition on curved boundaries, NACA Wartime Report W107 (ACR 3H30) or [NACA Technical Memo.1196], 1943.Google Scholar
  16. D.C. Wilcox, Turbulence Modeling for CFD (2nd Edition), DCW Industries, La Cañada, CA, 1998.Google Scholar
  17. D.E. Coles and E.A. Hirst (editors), Proceedings on Computational Turbulent Boundary Layers, 2, Stanford University Press, Stanford, CA, 1968.Google Scholar
  18. E.R. van Driest, On turbulent flow near a wall, J. Aeronaut. Sci., 23, 1956.Google Scholar
  19. S.J. Kline, M.V. Morkovin, G. Sovran and D.J. Cockrell, Computation of Turbulent Boundary Layers, AFOSR-IFP Stanford conference, Proceedings of the 1968 Conference, 1, Stanford University Press, Stanford, CA, 1968.Google Scholar
  20. H. Tennekes and J.L. Lumley, A First Course in Turbulence, M.I.T.Press, Cambridge, MA, 1972.Google Scholar
  21. G.S. Ambrok, Approximate solutions of equations for the thermal boundary layer with variations in the boundary layer structure, Soviet Phys. -Tech. Phys., 2 (9), 1957.Google Scholar
  22. W.P. Jones and B.E. Lunder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 15, 1972.Google Scholar
  23. B.A. Kader, Temperature and concentration profile in fully turbulent boundary layers, Int. J. Heat Mass transfer, 24(9), 1981.Google Scholar
  24. R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena (2nd Edition) John Wiley & Sons, Inc., Hoboken, NJ, 2002.Google Scholar
  25. F. Szymanski, Quelques solutions exactes des equations de l’hydrodynamique de fluide visqueux dans le cas d’un tuke cylindrique, J., Math., pure Appl., Ser. 9, 11, 1932.Google Scholar
  26. T.C. Papanastasiou, G.C. Georgiou and A.N. Alexandrou, Viscous Fluid Flow, CRC Press LLC, Boca Raton, FL, 2000.zbMATHGoogle Scholar
  27. K. Hiemez, Die Grenzschicht an einem in den gleich förmigen Flüssigkeittsstrom eingretauchen geraden Kreiszylinder, Dingler’s Polytech. J., 326, 1911.Google Scholar
  28. E. Achenback, Influence of surface roughness on the cross-flow around a circular cylinder, J. Fluid Mech., 46, 1971, and Experiments on the flow past spheres at very high Reynolds number, J. Fluid Mech., 54, 1972.Google Scholar
  29. M. Couette, Etudes sur le frottement des liquides, Ann. Chim. Phys., ser. 6, 21, 433–510.Google Scholar
  30. G.I. Taylor, Stability of a Viscous Liquid Contained between Two Rotating Cylinders, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 223, 289–343, 1923.CrossRefGoogle Scholar
  31. O. Reynolds, On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil, Philosophical Transactions of the Royal Society of London, 177, 157–234, 1886.CrossRefGoogle Scholar
  32. O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination criterion. Philosophical Transactions of the Royal Society of London, 14, 123–164, 1895.CrossRefGoogle Scholar
  33. C.F. Colebrook, Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Institution Civil Engineers, 1939.Google Scholar
  34. W.P. Jones and B.E. Launder, The Prediction of Laminarization with a Two-equation Model of Turbulence, Int. J. Heat Mass Transfer, 15, 301–314, 1972.CrossRefGoogle Scholar

The vorticity vortex dynamics is well documented with details in

  1. J.Z. Wu, H.Y. Ma and M.D. Zhou, Vorticity and Vortex Dynamics, Springer, New York, 2006.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Yamaguchi
    • 1
  1. 1.Doshisha UniversityKyo-TanabeshiJapan

Personalised recommendations