Skip to main content

Newtonian Flow

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 85))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Recent development of Newtonian viscous fluid flow is well documented together with fundamental concepts in fluid mechanics, including the flow instability, in

  • F.M. White, Viscous Fluid Flow(3rd Edition), McGraw Hill International, New York, 2006.

    Google Scholar 

  • F.S. Sherman, Viscous Flow, McGraw Hill Publishing Company, New York, 1990.

    MATH  Google Scholar 

The most classic text book in boundary layer theory is

  • H. Schlichting, Boundary-Layer Theory (7th Edition 1979), McGraw-Hill book company Inc., New York, 1955.

    MATH  Google Scholar 

  • L. Rosenhead, Laminar Boundary Layer, Oxford University, Oxford, Press, 1963.

    Google Scholar 

  • D. Meksyn, New Methods in Laminar Boundary Theory, Pergamon, London, 1961.

    Google Scholar 

Basic treatment on incompressible viscous flows with details on dimensional analysis is found in

  • R.L. Panton, Incompressible Flow (2nd Edition), John Willey & Sons, Inc., Hoboken, NJ, 1996.

    Google Scholar 

Extensive literature review for developing flows are found in

  • A.J. Word-Smith, Internal Fluid Flow, Clarendon Press, England, 1980.

    Google Scholar 

Experimental techniques on Newtonian fluid flow and visualization methods are documented in

  • W.J. Yang, Handbook of Flow Visualization, Hemisphere Publishing Corp., New York, 1989.

    Google Scholar 

Flow phenomena, specific data, correlations and approximations referred in the text are presented in

  • J. Boussinesq, Thiorie Analytique de la chaleur, 2, 172, Gauthier-Villars, Paris, 1903.

    Google Scholar 

  • P.L. Silveston, Warmedurchgang in waagerechten flüssigkeitsschichten, Part I Forsch. Ing. Wes. 24,29–32 and 59–69, 1958.

    Google Scholar 

  • H.S. Hele-Shaw, Investigation of the nature of surface resistance of water and of stream motion under certain experimental conditions, Frans. Inst. Naval Arch., 11, 1898.

    Google Scholar 

  • G.G. Stokes, Mathematical and physical papers I, 75, Trans. Camb. Soc., 8, 1845.

    Google Scholar 

  • C.W. Oseen, On the Stokes’ problem and on the fundamental problems of hydrodynamics (German), Ark. F. Mat. Astr. og Fys., 6 (29), 1910.

    Google Scholar 

  • J. Boussinesq, Comptes Reudus, 9, 1891.

    Google Scholar 

  • Prandtl-Tietjens, Hydro und Aeromechanics, Bd.II, 1931.

    Google Scholar 

  • R.K. Shah and A.L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978.

    Google Scholar 

  • J. Nikuradse, Strömungsgesetze in rauhen Rohen, Forsch. Arb. Ing.-Wes., (361), 1933.

    Google Scholar 

  • L. Prandtl, Über flussigkeitsbewegung bei sehr kleiner reibung. Verhundlungen des III. Internationalen Mathematiker-Kongrees, Heidelberg, 1904.

    Google Scholar 

  • L. Prandtl, Über flussigkeitsbewegung bei sehr kleiner reibung, Proc. Third Int. Math. Congr. Heidelberg (NACA Technical Memo.452 in English), 1908.

    Google Scholar 

  • L. Prandtl, Über die ausgebildete turblenz, Z. Angew. Math. Mech., 5, 1925.

    Google Scholar 

  • H. Blasius, Grenzschichten in flüssikeiten mit kleiner reibung, Z. Angew. Math. Phys., 56 [NACA Technical Memo.1256 in English], 1908.

    Google Scholar 

  • T. von Kàrmàn, Über den mechanismus des widerstandes, den ein bewegter Körger in einer flüssigkeit erzeugt, Nachr. Ges. Wiss. Göttingen Math. –Phys. Kl.II, 1921.

    Google Scholar 

  • H.W. Liepmann, Investigation on curved boundary layer stability and transition on curved boundaries, NACA Wartime Report W107 (ACR 3H30) or [NACA Technical Memo.1196], 1943.

    Google Scholar 

  • D.C. Wilcox, Turbulence Modeling for CFD (2nd Edition), DCW Industries, La Cañada, CA, 1998.

    Google Scholar 

  • D.E. Coles and E.A. Hirst (editors), Proceedings on Computational Turbulent Boundary Layers, 2, Stanford University Press, Stanford, CA, 1968.

    Google Scholar 

  • E.R. van Driest, On turbulent flow near a wall, J. Aeronaut. Sci., 23, 1956.

    Google Scholar 

  • S.J. Kline, M.V. Morkovin, G. Sovran and D.J. Cockrell, Computation of Turbulent Boundary Layers, AFOSR-IFP Stanford conference, Proceedings of the 1968 Conference, 1, Stanford University Press, Stanford, CA, 1968.

    Google Scholar 

  • H. Tennekes and J.L. Lumley, A First Course in Turbulence, M.I.T.Press, Cambridge, MA, 1972.

    Google Scholar 

  • G.S. Ambrok, Approximate solutions of equations for the thermal boundary layer with variations in the boundary layer structure, Soviet Phys. -Tech. Phys., 2 (9), 1957.

    Google Scholar 

  • W.P. Jones and B.E. Lunder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 15, 1972.

    Google Scholar 

  • B.A. Kader, Temperature and concentration profile in fully turbulent boundary layers, Int. J. Heat Mass transfer, 24(9), 1981.

    Google Scholar 

  • R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena (2nd Edition) John Wiley & Sons, Inc., Hoboken, NJ, 2002.

    Google Scholar 

  • F. Szymanski, Quelques solutions exactes des equations de l’hydrodynamique de fluide visqueux dans le cas d’un tuke cylindrique, J., Math., pure Appl., Ser. 9, 11, 1932.

    Google Scholar 

  • T.C. Papanastasiou, G.C. Georgiou and A.N. Alexandrou, Viscous Fluid Flow, CRC Press LLC, Boca Raton, FL, 2000.

    MATH  Google Scholar 

  • K. Hiemez, Die Grenzschicht an einem in den gleich förmigen Flüssigkeittsstrom eingretauchen geraden Kreiszylinder, Dingler’s Polytech. J., 326, 1911.

    Google Scholar 

  • E. Achenback, Influence of surface roughness on the cross-flow around a circular cylinder, J. Fluid Mech., 46, 1971, and Experiments on the flow past spheres at very high Reynolds number, J. Fluid Mech., 54, 1972.

    Google Scholar 

  • M. Couette, Etudes sur le frottement des liquides, Ann. Chim. Phys., ser. 6, 21, 433–510.

    Google Scholar 

  • G.I. Taylor, Stability of a Viscous Liquid Contained between Two Rotating Cylinders, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 223, 289–343, 1923.

    Article  Google Scholar 

  • O. Reynolds, On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil, Philosophical Transactions of the Royal Society of London, 177, 157–234, 1886.

    Article  Google Scholar 

  • O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination criterion. Philosophical Transactions of the Royal Society of London, 14, 123–164, 1895.

    Article  Google Scholar 

  • C.F. Colebrook, Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Institution Civil Engineers, 1939.

    Google Scholar 

  • W.P. Jones and B.E. Launder, The Prediction of Laminarization with a Two-equation Model of Turbulence, Int. J. Heat Mass Transfer, 15, 301–314, 1972.

    Article  Google Scholar 

The vorticity vortex dynamics is well documented with details in

  • J.Z. Wu, H.Y. Ma and M.D. Zhou, Vorticity and Vortex Dynamics, Springer, New York, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yamaguchi, H. (2008). Newtonian Flow. In: Engineering Fluid Mechanics. Fluid Mechanics and Its Applications, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6742-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6742-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6741-9

  • Online ISBN: 978-1-4020-6742-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics