Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 11))

  • 776 Accesses

Abstract

Activated stromal cells, e.g. inflammatory cells, fibroblasts and vascular cells, present in tumour microenvironments profoundly influence neoplastic development and progression to the tumour state. Macrophages are multifunctional immune cells that often constitute a major component of the inflammatory cell repertoire associated with premalignant and malignant tissues. Macrophages are recruited from the blood circulation by tumour-derived chemoattractants and preferentially localize to hypoxic tumour regions. Depending on their activation status and microenvironment, macrophages can impact tumour development and progression by either positive or negative mechanisms. Based upon this duality, the macrophage balance theory was proposed to emphasize complex relationships between tumourassociated macrophages and neoplastic cells. When appropriately activated, as during acute inflammatory responses, macrophages manifest an M1 phenotype and gain tumouricidal capacities; however, under adverse conditions present within tumour microenvironments, macrophages adopt an M2 phenotype and functionally contribute to neoplastic progression and overall tumour development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akre K, Ekstrom AM, Signorello LB, Hansson LE, Nyren O (2001) Aspirin and risk for gastric cancer: a population-based case-control study in Sweden. Br J Cancer 84:965–968.

    Article  PubMed  CAS  Google Scholar 

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689.

    PubMed  CAS  Google Scholar 

  • Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766.

    PubMed  CAS  Google Scholar 

  • Andrade SP, Hart IR, Piper PJ (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br J Pharmacol 107:1092–1095.

    PubMed  CAS  Google Scholar 

  • Angermuller S, Schunk M, Kusterer K (1995) Alteration of xanthine oxidase activity in sinusoidal endothelial cells and morphological changes of Kupffer cells in hypoxic and reoxygenated rat liver. Hepatology 21:1594–1601.

    PubMed  CAS  Google Scholar 

  • Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 62:1093–1102.

    PubMed  CAS  Google Scholar 

  • Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73:599–601.

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini M, Loetscher P (2000) Chemokines in inflammation and immunity. Immunol Today 21:418–420.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545.

    Article  PubMed  CAS  Google Scholar 

  • Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and igg immune complexes potentiate the process. Cancer Res 62:7042–7049.

    PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54.

    Article  PubMed  CAS  Google Scholar 

  • Blot E, Chen W, Vasse M, Paysant J, Denoyelle C, Pille JY, Vincent L, Vannier JP, Soria J, Soria C (2003) Cooperation between monocytes and breast cancer cells promotes factors involved in cancer aggressiveness. Br J Cancer 88:1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Bonecchi R, Sozzani S, Stine JT, Luini W, D’Amico G, Allavena P, Chantry D, Mantovani A (1998) Divergent effects of interleukin-4 and interferon-gamma on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Blood 92:2668–2671.

    PubMed  CAS  Google Scholar 

  • Boring L, Gosling J, Chensue SW, Kunkel SL, Farese Jr., RV, Broxmeyer HE, Charo IF (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561.

    Article  PubMed  CAS  Google Scholar 

  • Bosco MC, Reffo G, Puppo M, Varesio L (2004) Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell Immunol 228:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Burke B, Sumner S, Maitland N, Lewis CE (2002) Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 72:417–428.

    PubMed  CAS  Google Scholar 

  • Butterick CJ, Williams DA, Boxer LA, Jersild RA, Jr., Mantich N, Higgins C, Baehner RL (1981) Changes in energy metabolism, structure and function in alveolar macrophages under anaerobic conditions. Br J Haematol 48:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Cardiff RD (2001) Validity of mouse mammary tumour models for human breast cancer: comparative pathology. Microsc Res Tech 52:224–320.

    Article  PubMed  CAS  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988.

    Article  PubMed  CAS  Google Scholar 

  • Carta L, Pastorino S, Melillo G, Bosco MC, Massazza S, Varesio L (2001) Engineering of macrophages to produce IFN-gamma in response to hypoxia. J Immunol 166:5374–5380.

    PubMed  CAS  Google Scholar 

  • Cazin M, Paluszezak D, Bianchi A, Cazin JC, Aerts C, Voisin C (1990) Effects of anaerobiosis upon morphology and energy metabolism of alveolar macrophages cultured in gas phase. Eur Respir J 3:1015–1022.

    PubMed  CAS  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864.

    Article  PubMed  CAS  Google Scholar 

  • Chae P, Im M, Gibson F, Jiang Y, Graves DT (2002) Mice lacking monocyte chemoattractant protein 1 have enhanced susceptibility to an interstitial polymicrobial infection due to impaired monocyte recruitment. Infect Immun 70:3164–3169.

    Article  PubMed  CAS  Google Scholar 

  • Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61:1100–1106.

    PubMed  CAS  Google Scholar 

  • Chang YC, Hsu TL, Lin HH, Chio CC, Chiu AW, Chen NJ, Lin CH, Hsieh SL (2003) Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol Dec 4 [Epub ahead of print].

    Google Scholar 

  • Chen J, Bierhaus A, Schiekofer S, Andrassy M, Chen B, Stern DM, Nawroth PP (2001) Tissue factor–a receptor involved in the control of cellular properties, including angiogenesis. Thromb Haemost 86:334–345.

    PubMed  CAS  Google Scholar 

  • Comoglio PM, Trusolino L (2002) Invasive growth: from development to metastasis. J Clin Invest 109:857–862.

    PubMed  CAS  Google Scholar 

  • Cotterchio M, Kreiger N, Sloan M, Steingart A (2001) Nonsteroidal anti-inflammatory drug use and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:1213–1217.

    PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different!. J Exp Med 193:F23–F26.

    Article  PubMed  CAS  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657.

    Article  PubMed  CAS  Google Scholar 

  • Crowther M, Brown NJ, Bishop ET, Lewis CE (2001) Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70:478–490.

    PubMed  CAS  Google Scholar 

  • Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1993a) Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67:1126–1131.

    PubMed  CAS  Google Scholar 

  • Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F (1993b) Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 53:5365–5369.

    PubMed  CAS  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226.

    Article  PubMed  CAS  Google Scholar 

  • Dinapoli MR, Calderon CL, Lopez DM (1996) The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J Exp Med 183:1323–1329.

    Article  PubMed  CAS  Google Scholar 

  • Djemadji-Oudjiel N, Goerdt S, Kodelja V, Schmuth M, Orfanos CE (1996) Immunohistochemical identification of type II alternatively activated dendritic macrophages (RM 3/1 + 3, MS-1 + /-, 25F9-) in psoriatic dermis. Arch Dermatol Res 288:757–764.

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810.

    Article  PubMed  CAS  Google Scholar 

  • Dupuy E, Hainaud P, Villemain A, Bodevin-Phedre E, Brouland JP, Briand P, Tobelem G (2003) Tumoral angiogenesis and tissue factor expression during hepatocellular carcinoma progression in a transgenic mouse model. J Hepatol 38:793–802.

    Article  PubMed  CAS  Google Scholar 

  • Duyndam MC, Hilhorst MC, Schluper HM, Verheul HM, van Diest PJ, Kraal G, Pinedo HM, Boven E (2002) Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 160:537–548.

    PubMed  CAS  Google Scholar 

  • Dvorak HF, Nagy JA, Berse B, Brown LF, Yeo KT, Yeo TK, Dvorak AM, van de Water L, Sioussat TM, Senger DR (1992) Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann N Y Acad Sci 667:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Edwards RL, Rickles FR (1992) The role of leukocytes in the activation of blood coagulation. Semin Hematol 29:202–212.

    PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Engers R, Gabbert HE (2000) Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol 126:682–692.

    Article  PubMed  CAS  Google Scholar 

  • Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140:539–544.

    PubMed  CAS  Google Scholar 

  • Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257–269.

    PubMed  CAS  Google Scholar 

  • Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96.

    Article  PubMed  Google Scholar 

  • Fidler IJ (2003) Timeline: the pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1994) Tumor angiogenesis. Nat Med 1:206–232.

    Google Scholar 

  • Folkman J (1995) Tumor angiogenesis. In: Mendelsohn J, Howley PM, Israel MA, Liotta LA (eds) The molecular basis of cancer, Vol. 9. W. B. Saunders Company, Philadelphia, pp. 206–232.

    Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis. Cell 87:1153–1155.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934.

    PubMed  CAS  Google Scholar 

  • Funada Y, Noguchi T, Kikuchi R, Takeno S, Uchida Y, Gabbert HE (2003) Prognostic significance of CD8 + T cell and macrophage peritumoral infiltration in colorectal cancer. Oncol Rep 10:309–313.

    PubMed  Google Scholar 

  • Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol 166:5398–5406.

    PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez LA, Huerta-Alvarez C (2001) Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemiology 12:88–93.

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW (1991) Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear cells. Cytokine 3:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Perez A, Rodriguez L, Lopez-Ridaura R (2003) Effects of non-steroidal anti-inflammatory drugs on cancer sites other than the colon and rectum: a meta-analysis. BMC Cancer 3:1–12.

    Article  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Gorrin-Rivas MJ, Arii S, Mori A, Takeda Y, Mizumoto M, Furutani M, Imamura M (2000) Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg 231:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage–a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Belladonna ML, Vacca C, Bianchi R, Fallarino F, Orabona C, Fioretti MC, Puccetti P (2001) Positive regulatory role of IL-12 in macrophages and modulation by IFN-gamma. J Immunol 167:221–227.

    PubMed  CAS  Google Scholar 

  • Guida E, Stewart A (1998) Influence of hypoxia and glucose deprivation on tumour necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor expression in human cultured monocytes. Cell Physiol Biochem 8:75–88.

    Article  PubMed  CAS  Google Scholar 

  • Gyetko MR, Todd 3rd, RF, Wilkinson CC, Sitrin RG (1994) The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 93:1380–1387.

    Article  PubMed  CAS  Google Scholar 

  • Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22:4281–4284.

    PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D (1998) Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs Jr., JB, Taintor RR, Vavrin Z, Rachlin EM 1988 Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94.

    Article  PubMed  CAS  Google Scholar 

  • Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Horn D, van der Bosch J, Ruller S, Schlaak M (1991) Suppression of tumor cell susceptibility to monocyte-induced cell death by growth-inhibitory signals generated during monocyte/tumor cell interaction. J Cell Biochem 45:213–223.

    Article  PubMed  CAS  Google Scholar 

  • Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T (2001) Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194:1549–1559.

    Article  PubMed  CAS  Google Scholar 

  • Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Okumura H, Matsumoto M, Miyazono F, Hokita S, Aikou T (2003) Tumor-associated macrophage (TAM) infiltration in gastric cancer. Anticancer Res 23:4079–4083.

    PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology, 5th edn. Garland Publishing, New York and London.

    Google Scholar 

  • Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92:4392–4396.

    Article  PubMed  CAS  Google Scholar 

  • Johnson WJ, Steplewski Z, Matthews TJ, Hamilton TA, Koprowski H, Adams DO (1986) Cytolytic interactions between murine macrophages, tumor cells, and monoclonal antibodies: characterization of lytic conditions and requirements for effector activation. J Immunol 136:4704–4713.

    PubMed  CAS  Google Scholar 

  • Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700.

    PubMed  CAS  Google Scholar 

  • Kacinski BM (1995) CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 27:79–85.

    Article  PubMed  CAS  Google Scholar 

  • Kacinski BM (1997) CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev 46:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Kamate C, Baloul S, Grootenboer S, Pessis E, Chevrot A, Tulliez M, Marchiol C, Viguier M, Fradelizi D (2002) Inflammation and cancer, the mastocytoma P815 tumor model revisited: triggering of macrophage activation in vivo with pro-tumorigenic consequences. Int J Cancer 100:571–579.

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi T, Alexander HR, Fong M, Strassmann G (1995) Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J Immunol 154:3383–3390.

    PubMed  CAS  Google Scholar 

  • Kappel A, Ronicke V, Damert A, Flamme I, Risau W, Breier G (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93:4284–4292.

    PubMed  CAS  Google Scholar 

  • Kawase I, Komuta K, Ogura T, Fujiwara H, Hamaoka T, Kishimoto S (1985) Murine tumor cell lysis by antibody-dependent macrophage-mediated cytotoxicity using syngeneic monoclonal antibodies. Cancer Res 45:1663–1668.

    PubMed  CAS  Google Scholar 

  • Keller R, Geiges M, Keist R (1990) L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50:1421–1425.

    PubMed  CAS  Google Scholar 

  • Klassen DK, Sagone Jr., AL (1980) Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood 56:985–992.

    PubMed  CAS  Google Scholar 

  • Ko SC, Chapple KS, Hawcroft G, Coletta PL, Markham AF, Hull MA (2002) Paracrine cyclooxygenase-2-mediated signalling by macrophages promotes tumorigenic progression of intestinal epithelial cells. Oncogene 21:7175–7186.

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196.

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MA, Handsley MM, Edwards DR (2003) Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med 5:1–39.

    Article  PubMed  Google Scholar 

  • Lasek W, Basak G, Switaj T, Jakubowska AB, Wysocki PJ, Mackiewicz A, Drela N, Jalili A, Kaminski R, Kozar K, Jakobisiak M (2003) Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother 53(4):363–372, Epub 2003 Nov 7.

    PubMed  Google Scholar 

  • Leek RD, Harris AL, Lewis CE (1994) Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukoc Biol 56:423–435.

    PubMed  CAS  Google Scholar 

  • Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL (2000) Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995.

    Article  PubMed  CAS  Google Scholar 

  • Leeper-Woodford SK, Mills JW (1992) Phagocytosis and ATP levels in alveolar macrophages during acute hypoxia. Am J Respir Cell Mol Biol 6:326–334.

    PubMed  CAS  Google Scholar 

  • Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329:630–632.

    Article  PubMed  CAS  Google Scholar 

  • Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST (1997) Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol (Berl) 93:518–527.

    Article  CAS  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612.

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158.

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66:889–900.

    PubMed  CAS  Google Scholar 

  • Li C, Shintani S, Terakado N, Nakashiro K, Hamakawa H (2002) Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma. Oncol Rep 9:1219–1223.

    PubMed  Google Scholar 

  • Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 7:147–162.

    Article  PubMed  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246.

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740.

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67:5064–5066.

    Article  PubMed  CAS  Google Scholar 

  • Liss C, Fekete MJ, Hasina R, Lingen MW (2002) Retinoic acid modulates the ability of macrophages to participate in the induction of the angiogenic phenotype in head and neck squamous cell carcinoma. Int J Cancer 100:283–289.

    Article  PubMed  CAS  Google Scholar 

  • Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS (1999) Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 163:6251–6260.

    PubMed  CAS  Google Scholar 

  • Lorsbach RB, Murphy WJ, Lowenstein CJ, Snyder SH, Russell SW (1993) Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem 268:1908–1913.

    PubMed  CAS  Google Scholar 

  • Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608.

    Article  PubMed  CAS  Google Scholar 

  • Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B, Chaitchik S, Keydar I, Ben-Baruch A (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681–4687.

    PubMed  CAS  Google Scholar 

  • Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141.

    Article  PubMed  CAS  Google Scholar 

  • Lwaleed BA, Bass PS, Cooper AJ (2001) The biology and tumour-related properties of monocyte tissue factor. J Pathol 193:3–12.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A (1995) TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol 155:4926–4932.

    PubMed  CAS  Google Scholar 

  • Maity A, Solomon D (2000) Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (upar) message by hypoxia. Exp Cell Res 255:250–257.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A (1994) Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Invest 71:5–16.

    PubMed  CAS  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–16.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555.

    Article  PubMed  CAS  Google Scholar 

  • Martin JH, Edwards SW (1993) Changes in mechanisms of monocyte/macrophage-mediated cytotoxicity during culture. Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing. J Immunol 150:3478–3486.

    PubMed  CAS  Google Scholar 

  • Meier CR, Schmitz S, Jick H (2002) Association between acetaminophen or nonsteroidal antiinflammatory drugs and risk of developing ovarian, breast, or colon cancer. Pharmacotherapy 22:303–309.

    Article  PubMed  CAS  Google Scholar 

  • Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791.

    PubMed  CAS  Google Scholar 

  • Meyer-Siegler K, Hudson PB (1996) Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology 48:448–452.

    Article  PubMed  CAS  Google Scholar 

  • Mills CD, Shearer J, Evans R, Caldwell MD (1992) Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol 149:2709–2714.

    PubMed  CAS  Google Scholar 

  • Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, Pasquali C, Calori G, Pessi F, Sperti C, Di Carlo V, Allavena P, Piemonti L (2003) The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 63:7451–7461.

    PubMed  CAS  Google Scholar 

  • Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I, Schroder JM, Schadendorf D (1999) The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer 79:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  • Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM (1996) Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev 7:47–64.

    Article  PubMed  CAS  Google Scholar 

  • Mytar B, Woloszyn M, Szatanek R, Baj-Krzyworzeka M, Siedlar M, Ruggiero I, Wieckiewicz J, Zembala M 2003 Tumor cell-induced deactivation of human monocytes. J Leukoc Biol 74:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  • Naylor MS, Stamp GW, Davies BD, Balkwill FR (1994) Expression and activity of MMPS and their regulators in ovarian cancer. Int J Cancer 58:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734.

    PubMed  CAS  Google Scholar 

  • Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, Allavena P, Sozzani S, Mantovani A, Balkwill FR (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95:2391–2396.

    Article  PubMed  CAS  Google Scholar 

  • Negus RP, Turner L, Burke F, Balkwill FR (1998) Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J Leukoc Biol 63:758–765.

    PubMed  CAS  Google Scholar 

  • Nesbit M, Schaider H, Miller TH, Herlyn M (2001) Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 166:6483–6490.

    PubMed  CAS  Google Scholar 

  • Noguchi T, Wada S, Takeno S, Moriyama H, Kimura Y, Uchida Y (2003) Lymph node metastasis could be predicted by evaluation of macrophage infiltration and hsp70 expression in superficial carcinoma of the esophagus. Oncol Rep 10:1161–1164.

    PubMed  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328.

    Article  PubMed  Google Scholar 

  • Ohno S, Inagawa H, Soma G, Nagasue N (2002) Role of tumor-associated macrophage in malignant tumors: should the location of the infiltrated macrophages be taken into account during evaluation? Anticancer Res 22:4269–4275.

    PubMed  CAS  Google Scholar 

  • Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342.

    PubMed  Google Scholar 

  • Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22:773–778.

    PubMed  CAS  Google Scholar 

  • Onodera S, Suzuki K, Matsuno T, Kaneda K, Takagi M, Nishihira J (1997) Macrophage migration inhibitory factor induces phagocytosis of foreign particles by macrophages in autocrine and paracrine fashion. Immunology 92:131–137.

    Article  PubMed  CAS  Google Scholar 

  • Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N, Meijer S, van der Sijp JR, Beelen RH, van Egmond M (2005) Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol 207:147–155.

    Article  PubMed  Google Scholar 

  • Patterson BC, Sang QXA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825.

    Article  PubMed  CAS  Google Scholar 

  • Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118:915–922.

    Article  PubMed  CAS  Google Scholar 

  • Poulter LW, Janossy G, Power C, Sreenan S, Burke C (1994) Immunological/physiological relationships in asthma: potential regulation by lung macrophages. Immunol Today 15:258–261.

    Article  PubMed  CAS  Google Scholar 

  • Pozzi LA, Weiser WY (1992) Human recombinant migration inhibitory factor activates human macrophages to kill tumor cells. Cell Immunol 145:372–379.

    Article  PubMed  CAS  Google Scholar 

  • Pullyblank AM, Guillou PJ, Monson JR (1995) Interleukin 1 and tumour necrosis factor alpha may be responsible for the lytic mechanism during anti-tumour antibody-dependent cell-mediated cytotoxicity. Br J Cancer 72:601–606.

    PubMed  CAS  Google Scholar 

  • Ren Y, Tsui HT, Poon RT, Ng IO, Li Z, Chen Y, Jiang G, Lau C, Yu WC, Bacher M, Fan ST (2003) Macrophage migration inhibitory factor: roles in regulating tumor cell migration and expression of angiogenic factors in hepatocellular carcinoma. Int J Cancer 107:22–29.

    Article  PubMed  CAS  Google Scholar 

  • Riethdorf L, Riethdorf S, Gutzlaff K, Prall F, Loning T (1996) Differential expression of the monocyte chemoattractant protein-1 gene in human papillomavirus-16-infected squamous intraepithelial lesions and squamous cell carcinomas of the cervix uteri. Am J Pathol 149:1469–1476.

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA (2002) Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62:1847–1853.

    PubMed  CAS  Google Scholar 

  • Roth SJ, Carr MW, Springer TA (1995) C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-gamma inducible protein-10, stimulate transendothelial chemotaxis of T lymphocytes. Eur J Immunol 25:3482–3488.

    Article  PubMed  CAS  Google Scholar 

  • Ryffel B (1997) Interleukin-12: role of interferon-gamma in IL-12 adverse effects. Clin Immunol Immunopathol 83:18–20.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Kuratsu J, Takeshima H, Yoshimura T, Ushio Y (1995) Expression of monocyte chemoattractant protein-1 in meningioma. J Neurosurg 82:874–878.

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Goto T, Haranaka K, Satomi N, Nariuchi H, Mano-Hirano Y, Sawasaki Y (1986) Actions of tumor necrosis factor on cultured vascular endothelial cells: morphologic modulation, growth inhibition, and cytotoxicity. J Natl Cancer Inst 76:1113–1121.

    PubMed  CAS  Google Scholar 

  • Satoh T, Saika T, Ebara S, Kusaka N, Timme TL, Yang G, Wang J, Mouraviev V, Cao G, Fattah el MA, Thompson TC (2003) Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 63:7853–7860.

    PubMed  CAS  Google Scholar 

  • Scannell G, Waxman K, Kaml GJ, Ioli G, Gatanaga T, Yamamoto R, Granger GA (1993) Hypoxia induces a human macrophage cell line to release tumor necrosis factor-alpha and its soluble receptors in vitro. J Surg Res 54:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402.

    Article  PubMed  CAS  Google Scholar 

  • Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider L, Tang R, Pouillart P, Lidereau R (1994) Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 86:120–126.

    Article  PubMed  CAS  Google Scholar 

  • Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305.

    PubMed  CAS  Google Scholar 

  • Seno H, Oshima M, Ishikawa TO, Oshima H, Takaku K, Chiba T, Narumiya S, Taketo MM (2002) Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 62:506–511.

    PubMed  CAS  Google Scholar 

  • Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe CR, Collet JP, McNutt M, Belzile E, Boivin JF, Hanley JA (2000) Nested case-control study of the effects of non-steroidal anti-inflammatory drugs on breast cancer risk and stage. Br J Cancer 83:112–120.

    Article  PubMed  CAS  Google Scholar 

  • Shaw GM, Levy PC, Lobuglio AF (1978) Human monocyte cytotoxicity to tumor cells. I. Antibody-dependent cytotoxicity. J Immunol 121:573–578.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Abe R, Nakamura H, Ohkawara A, Suzuki M, Nishihira J (1999) High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem Biophys Res Commun 264:751–758.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H, Yano S, Bucana CD, Fidler IJ (2000) Induction of chemokine secretion and enhancement of contact-dependent macrophage cytotoxicity by engineered expression of granulocyte-macrophage colony-stimulating factor in human colon cancer cells. J Immunol 164:2728–2737.

    PubMed  CAS  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166.

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Saccani A, Bottazzi B, Bernasconi S, Allavena P, Gaetano B, Fei F, LaRosa G, Scotton C, Balkwill F, Mantovani A (2000) Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol 164:733–738.

    PubMed  CAS  Google Scholar 

  • Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164:762–767.

    PubMed  CAS  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727.

    Article  PubMed  CAS  Google Scholar 

  • Siegert A, Denkert C, Leclere A, Hauptmann S (1999) Suppression of the reactive oxygen intermediates production of human macrophages by colorectal adenocarcinoma cell lines. Immunology 98:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Silzle T, Kreutz M, Dobler MA, Brockhoff G, Knuechel R, Kunz-Schughart LA (2003) Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol 33:1311–1120.

    Article  PubMed  CAS  Google Scholar 

  • Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K, Detmar M (2001) Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159:893–903.

    PubMed  CAS  Google Scholar 

  • Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21:3343–3350.

    Article  PubMed  CAS  Google Scholar 

  • Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med 7:1048–1051.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor EM, DiNapoli MR, Calderon C, Colsky A, Fu YX, Lopez DM (1995) Decreased macrophage-mediated cytotoxicity in mammary-tumor-bearing mice is related to alteration of nitric-oxide production and/or release. Int J Cancer 60:660–667.

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S, Sallusto F, Luini W, Zhou D, Piemonti L, Allavena P, Van Damme J, Valitutti S, Lanzavecchia A, Mantovani A (1995) Migration of dendritic cells in response to formyl peptides, c5a, and a distinct set of chemokines. J Immunol 155:3292–3295.

    PubMed  CAS  Google Scholar 

  • Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415–433.

    Article  PubMed  CAS  Google Scholar 

  • Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422.

    PubMed  CAS  Google Scholar 

  • Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2003) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53(6):543–550, Epub 2003 Dec 10.

    Article  PubMed  CAS  Google Scholar 

  • Tang R, Beuvon F, Ojeda M, Mosseri V, Pouillart P, Scholl S (1992) M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J Cell Biochem 50:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Tang RP, Kacinski B, Validire P, Beuvon F, Sastre X, Benoit P, dela Rochefordiere A, Mosseri V, Pouillart P, Scholl S (1990) Oncogene amplification correlates with dense lymphocyte infiltration in human breast cancers: a role for hematopoietic growth factor release by tumor cells? J Cell Biochem 44:189–198.

    Article  PubMed  CAS  Google Scholar 

  • te Koppele JM, Keller BJ, Caldwell-Kenkel JC, Lemasters JJ, Thurman RG (1991) Effect of hepatotoxic chemicals and hypoxia on hepatic nonparenchymal cells: impairment of phagocytosis by Kupffer cells and disruption of the endothelium in rat livers perfused with colloidal carbon. Toxicol Appl Pharmacol 110:20–30.

    Article  Google Scholar 

  • Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44.

    PubMed  CAS  Google Scholar 

  • Topoll HH, Zwadlo G, Lange DE, Sorg C (1989) Phenotypic dynamics of macrophage subpopulations during human experimental gingivitis. J Periodontal Res 24:106–112.

    Article  PubMed  CAS  Google Scholar 

  • Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of tnfalpha and IL- 1alpha. Int J Cancer 85:182–188.

    PubMed  CAS  Google Scholar 

  • Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251–276.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 70:83–243.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Kuwabara K, Hirota S, Ikeda J, Stern D, Yanagi H, Matsumoto M, Ogawa S, Kitamura Y (1996) 150-kd oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. J Clin Invest 98:1930–1941.

    Article  PubMed  CAS  Google Scholar 

  • Tsung K, Dolan JP, Tsung YL, Norton JA (2002) Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075.

    PubMed  CAS  Google Scholar 

  • Turner L, Scotton C, Negus R, Balkwill F (1999) Hypoxia inhibits macrophage migration. Eur J Immunol 29:2280–2287.

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3489.

    PubMed  CAS  Google Scholar 

  • Urban JL, Shepard HM, Rothstein JL, Sugarman BJ, Schreiber H (1986) Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci USA 83:5233–5237.

    Article  PubMed  CAS  Google Scholar 

  • von Luettichau I, Nelson PJ, Pattison JM, van de Rijn M, Huie P, Warnke R, Wiedermann CJ, Stahl RA, Sibley RK, Krensky AM (1996) RANTES chemokine expression in diseased and normal human tissues. Cytokine 8:89–98.

    Article  CAS  Google Scholar 

  • von Stebut E, Metz M, Milon G, Knop J, Maurer M (2003) Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1alpha /beta released from neutrophils recruited by mast cell-derived tnfalpha. Blood 101:210–215.

    Article  CAS  Google Scholar 

  • Vrana JA, Stang MT, Grande JP, Getz MJ (1996) Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor beta family. Cancer Res 56:5063–5070.

    PubMed  CAS  Google Scholar 

  • Watanabe K, Jose PJ, Rankin SM (2002) Eotaxin-2 generation is differentially regulated by lipopolysaccharide and IL-4 in monocytes and macrophages. J Immunol 168:1911–1918.

    PubMed  CAS  Google Scholar 

  • Webb DS, Mostowski HS, Gerrard TL (1991) Cytokine-induced enhancement of ICAM-1 expression results in increased vulnerability of tumor cells to monocyte-mediated lysis. J Immunol 146:3682–3686.

    PubMed  CAS  Google Scholar 

  • Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887.

    Article  PubMed  CAS  Google Scholar 

  • Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916.

    Article  PubMed  CAS  Google Scholar 

  • Wong MP, Cheung KN, Yuen ST, Fu KH, Chan AS, Leung SY, Chung LP (1998) Monocyte chemoattractant protein-1 (MCP-1) expression in primary lymphoepithelioma-like carcinomas (lelcs) of the lung. J Pathol 186:372–377.

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80:1529–1537.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029.

    Article  PubMed  CAS  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228.

    Article  PubMed  CAS  Google Scholar 

  • Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497–503.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI, Leonard EJ (1989) Human monocyte chemoattractant protein-1 (MCP-1). Full-length cdna cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett 244:487–493.

    Article  PubMed  CAS  Google Scholar 

  • Young HA, Hardy KJ (1995) Role of interferon-gamma in immune cell regulation. J Leukoc Biol 58:373–381.

    PubMed  CAS  Google Scholar 

  • Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275:L818–L826.

    PubMed  CAS  Google Scholar 

  • Yun JK, McCormick TS, Villabona C, Judware RR, Espinosa MB, Lapetina EG (1997) Inflammatory mediators are perpetuated in macrophages resistant to apoptosis induced by hypoxia. Proc Natl Acad Sci USA 94:13903–13908.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yoshimura T, Graves DT (1997) Antibody to Mac-1 or monocyte chemoattractant protein-1 inhibits monocyte recruitment and promotes tumor growth. J Immunol 158:4855–4861.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Deng Y, Luther T, Muller M, Ziegler R, Waldherr R, Stern DM, Nawroth PP (1994) Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94:1320–1327.

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Zhang Y, Ardans JA, Wahl LM (2003) Interferon-gamma differentially regulates monocyte matrix metalloproteinase-1 and -9 through tumor necrosis factor-alpha and caspase 8. J Biol Chem 278:45406–45413.

    Article  PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Eichten, A., de Visser, K.E., Coussens, L.M. (2008). Macrophages in tumour development and metastasis. In: Kaiser, H.E., Nasir, A. (eds) Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response. Cancer Growth and Progression, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6729-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6729-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6728-0

  • Online ISBN: 978-1-4020-6729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics