Skip to main content

A biodynamical model of human T-cell development and pathology: design, testing and validation

  • Chapter
Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response

Part of the book series: Cancer Growth and Progression ((CAGP,volume 11))

  • 755 Accesses

Abstract

We describe a coupled ordinary differential equation model of human T-cell proliferative disorders based upon documented changes in various pools such as the bone marrow, thymic compartments and peripheral blood. The conceptual design of the model is based upon previously collected experimental data, its testing and validation by comparing with normal human cell pool data at various ages as well as their changes in response to HTLV-1, HHV-6 and HIV-1 viral infections. These viruses were chosen because they all target the same CD4 lymphocyte, yet produce different response patterns such as hyperplasia, aplasia and neoplasia. They were also selected because respective cell pool data were available for comparison with detailed human studies. The ultimate task of this modeling effort is to simulate the development of T-cell lymphomas and other immunoproliferative or aproliferative (i.e. aplastic) abnormalities reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison JP (1987) Structure, function and serology of the T-cell antigen complex. Annu Rev Immunol 5:503–540.

    Article  PubMed  CAS  Google Scholar 

  • Appasamy PM (1999) Biological and clinical implications of interleukin-7 and lymphopoiesis. Cytokines Cell Mol Ther 5:25–39.

    PubMed  CAS  Google Scholar 

  • Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA, Havlir DV, Richman DD, Waters A, Easterbrook P, McMichael AJ, Rowland-Jones SL (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signalling: cell fate control and signal integration in development. Science 284:770–776.

    Article  PubMed  CAS  Google Scholar 

  • Arzt E, Kovalovsky D, Igaz LM, Costas M, Plazas P, Refogo D, Paez-Pareda M, Reul JM, Stalla G, Holsboer F (2000) Functional cross-talk among cytokines, T-cell receptor, and glucocorticoid receptor transcriptional activity and action. Ann NY Acad Sci 917:672–677.

    PubMed  CAS  Google Scholar 

  • Atkins B, Mueller C, Okada CY, Reinert RA, Weissman IL, Spangrude GJ (1987) Early events in T-cell maturation. Annu Rev Immunol 5:325–365.

    Article  Google Scholar 

  • Azuara V, Grigoriadu K, Lembezat MP, Nagler-Anderson C, Perreira P (2001) Strain-specific TCR repertoire selection of IL-4-producing Thy-1 dull gamma delta thymocytes. Eur J Immunol 31:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or RL, Segel LA (1998) On the role of a possible dialogue between cytokine and TCR presentation mechanisms in the regulation of autoimmune disease. J Theor Biol 190:161–178.

    Article  PubMed  CAS  Google Scholar 

  • Bodey B, Bodey Jr., B, Siegel SE, Kaiser HE (1999) Molecular biological ontogenesis of the thymic reticulo-epithelial cell network during the organization of the cellular microenvironment. In Vivo 13:267–294.

    PubMed  CAS  Google Scholar 

  • Bodey B, Bodey Jr., B, Siegel SE, Kaiser HE (2000) The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation on intrathymic lymphopoiesis. Anticancer Res 20:1871–1888.

    PubMed  CAS  Google Scholar 

  • Bondurant MC, Koury MJ (1999). Origin and development of blood cells. In: Lee GR, Foerster J, Lukens J, Paraskevas F, Rodger G (ed) Wintrob’s clinical hematology 10th edn. Williams & Wilkins, Baltimore, pp 145–168.

    Google Scholar 

  • Brandt ME, Chen G (2001) Feedback control of a biodynamical model of HIV-1. IEEE T Bio-Med Eng 48:754–759.

    Article  CAS  Google Scholar 

  • Brandt ME, Wang G, Krueger GRF, Buja LM (2002) A biodynamical regulatory model of the T-cell system. Proceedings of the Second Joint IEEE EMBS/BMES Conference.

    Google Scholar 

  • Carrol AM, DeSousa M (1983) Thymus cell differentiation and in vivo T-cell migration: Migration of lectin-selected thymocytes. Cell Immunol 23:356–375.

    Google Scholar 

  • Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M, Appay V, Rizzardi GP, Fleury S, Lipp M, Forster R, Rowland-Jones S, Sekaly RP, McMichael AJ, Pantaleo G (2001) Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410:106–111.

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Six A, Kubota T, Tsuji S, Kong FK, Gobel TW, Cooper MD (1996) T cell receptors and T cell development. Curr Top Microbiol Immunol 212:37–53.

    PubMed  CAS  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239.

    Article  PubMed  CAS  Google Scholar 

  • Correla-Neves M, Mathis D, Benoist C (2001) A molecular chart of thymocyte positive selection. Eur J Immunol 31:2583–2592.

    Article  Google Scholar 

  • Crouse DA, Jordan RK, Sharp JG (1980). T-cell differentiation. In: Battisto and Knight (ed) Immunoglobulin genes and cell differentiation. Elsevier, North Holland/Amsterdam, The Netherlands, pp 65–78.

    Google Scholar 

  • Crouse DA, Turpen JB, Sharp JG (1985) Thymic non-lymphoid cells. Surv Immunol Res 4:120–134.

    PubMed  CAS  Google Scholar 

  • Cyster JG (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286:2098–2102.

    Article  PubMed  CAS  Google Scholar 

  • Daefler S, Krueger GRF (1989a) Expression of proliferation and differentiation antigens in response to modulation of membrane lipid fluidity in chronic lymphatic leukemia lymphocytes. Anticancer Res 9:501–506.

    PubMed  CAS  Google Scholar 

  • Daefler S, Krueger GRF (1989b) Lack of dynamic lipid changes after binding of interleukin-2 in chronic lymphocytis leukemia lymphocytes indicates defective transmembrane signaling. Anticancer Res 9:743–748.

    PubMed  CAS  Google Scholar 

  • Dappen GE, Crouse DA, Anderson RW, Jordan RK, Robinson JH, Sharp JG (1982) Morphological assessment of immunologically relevant cells in the thymus. Adv Exp Biol Med 149:389–399.

    CAS  Google Scholar 

  • Dardenne M, Pleau JM, Man NK, Bach JF (1977) Structure of circulating thymic factor: a peptide isolated from pig serum. I. Isolation and purification. J Biol Chem 252:8040–8044.

    PubMed  CAS  Google Scholar 

  • Davis MH, Chien YH (1999). T-cell antigen receptors. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 341–366.

    Google Scholar 

  • de la Hera A, Marston W, Aranda C, Toribio ML, Martinez C (1989) Thymic stroma is required for the development of human T cell lineages in vitro. Int Immunol 1:471–478.

    Article  PubMed  Google Scholar 

  • Dieu-Nosjean MC, Massacrier C, Vanbervliet B, Fridman WH, Caux C (2001) Il-10 induces CCR6 expression during Langerhans cell development while IL-4 and IFN-gamma suppress it. J Immunol 167:5594–5602.

    PubMed  CAS  Google Scholar 

  • Dunon D, Courtois D, Vainio O, Six A, Chen CH, Cooper MD, Dangy JP, Imhof BA (1997) Ontogeny of the immune system: gamma/delta and alpha/beta T cells migrate from thymus to the periphery in alternating waves. J Exp Med 186:977–988.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich GD, Poiesz BJ (1988) Clinical and molecular parameters of HTLV-1 infection. Clin Lab Med 8:65–84.

    PubMed  CAS  Google Scholar 

  • Eren R, Zharhary D, Abel L, Globerson A (1987) Ontogeny of T cells: development of pre-T cells from fetal liver and yolk sac in the thymus microenvironment. Cell Immunol 108:76–84.

    Article  PubMed  CAS  Google Scholar 

  • Feaux de Lacroix W, Deying T, Krueger GRF (1981). Cell proliferation in the T lymphocyte lineage during the latent period of Moloney virus induced lymphomagenesis. Eleventh European Study Group for Cytokinetics in Pathology Meeting, Aarhus, Denmark (book of abstracts).

    Google Scholar 

  • Fiorini E, Marchisio PC, Scupoli MT, Poffe O, Tagliabue E, Brentegnani M, Colombatti M, Santini F, Tridente G, Ramarli D (2000) Adhesion of immature and mature T cells induces in human thymic epithelial cells (TEC) activation of IL-6 gene transcription factors (NF-kappab and NF-IL6) and IL-6 gene expression: role of alpha3beta1 and alpha6beta4 integrins. Dev Immunol 7:195–208.

    Article  PubMed  CAS  Google Scholar 

  • Forrest S, Hofmeyr SA (2000). Immunology as information processing. In: Segel LA, Cohen IR (ed) Design principles for immune system and other distributed autonomous systems. Oxford University Press, New York, pp 361–387.

    Google Scholar 

  • Gessain A, Vernant JC, Maurs L (1985) Antibodies to human T-lymphotropic virus type 1 in patients with tropical spastic paraparesis. Lancet II 407–409.

    Article  Google Scholar 

  • Goldstein G (1977) Molecular control of proliferation and differentiation. Ann NY Acad Sci 249:177–185.

    Article  Google Scholar 

  • Greenberger JS (1991) The hematopoietic microenvironment. Crit Rev Oncol Hematol 11:65–84.

    Article  PubMed  CAS  Google Scholar 

  • Guerin S, Mari B, Fernandez E, Belhacene N, Toribio ML, Auberger P (1997) CD10 is expressed on human thymic epithelial cell lines and modulates thymopentin-induced cell proliferation. FASEB J 11:1003–1011.

    PubMed  CAS  Google Scholar 

  • Haas W, Deying T, Krueger GRF, Feaux de Lacroix W (1982) Autoradiographic and immunocytologic identification of atypical cell proliferation during Moloneyvirus induced lymphoma development. In: Yoh DS, Blakeslee JR (eds) Advances in comparative leukemia research. Elsevier Biomedical, Amsterdam, The Netherlands, pp 241–243.

    Google Scholar 

  • Harris CA, Andryuk PJ, Cline S, Chan HK, Natarajan A, Siekierka JJ, Goldstein G (1994) Three distinct human thymopoietins are derived from alternatively spliced mrnas. Proc Natl Acad Sci USA 91:6283–6287.

    Article  PubMed  CAS  Google Scholar 

  • Heine UI, Krueger GRF, Karpinski A, Munoz E, Krueger MB (1983a) Quantitative light and electron microscopic changes in thymic reticular epithelial cells during Moloneyvirus induced lymphoma development. J Cancer Res Clin Oncol 106:102–111.

    Article  PubMed  CAS  Google Scholar 

  • Heine UI, Krueger GRF, Munoz E, Karpinski A (1983b) Altered thymic epithelial cells may be decisive for Moloneyvirus induced lymphoma development. In: Bailey GW (ed) Proceedings of the 41st Annual Meeting of the Electron Microscopic Society of America, pp 784–785.

    Google Scholar 

  • Hochberg EP, Chillemi AC, Wu CJ, Neuberg D, Canning C, Hartman K, Alyea EP, Soiffer RJ, Kalams SA, Ritz J (2001) Quantitation of T-cell neogenesis in vivo after allogeneic bone marrow transplantation in adults. Blood 98:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  • Inghirami G, Knowles DM (1992) The immune system, structure and function. In: Knowles DM (ed) Neoplastic hematopathology Williams & Wilkins, Baltimore, pp 27–72.

    Google Scholar 

  • Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M, Henrique D, Parreira L (2001) Differential effects of notch ligands delta-1 and jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002.

    Article  PubMed  CAS  Google Scholar 

  • Janossy G, Campana D, Akbar A (1989) Kinetics of T cell development. Curr T Pathol 79:59–99.

    CAS  Google Scholar 

  • Kam N, Cohen IR, Harel D (2001) The immune system as a reactive system: modeling T cell activation with statecharts. Proceedings of Symposia Human-Centric Computing Languages and Environments. IEEE Computer Society Press, Stresa, Italy, pp 15–22.

    Google Scholar 

  • Kerre TCC, DeSmet G, DeSmedt M, Offner F, DeBosscher J, Plum J, Vanderkerckhove B (2001) Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/ltsz scid/scid mice but sahow different kinetics in expansion. J Immunol 167:3692–3698.

    PubMed  CAS  Google Scholar 

  • Kim JK, Takahashi I, Kai Y, Kiyono H (2001) Influence of enterotoxin in mucosal intranet: selective inhibition of extrathymic T cell development in intestinal intraepithelial lymphocytes by oral exposure to heat-labile toxin. Eur J Immunol 31:2960–2969.

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL (2000) Cell fate conversion of lymphoid committed progenitors by instructive action of cytokines. Nature 407:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Chen CH, Cooper MD (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Kong FK, Chen CL, Six A, Hockett RD, Cooper MD (1999) T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci USA 96:1536–1540.

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer J (1987) Immunoglobulin and T-cell receptor genes reveal the clonality, lineage and translocations of lymphoid neoplasms. In: DeVita VT, Hellman S, Rosenberg (ed) Important advances in oncology. Lippincott, Philadelphia, pp 3–25.

    Google Scholar 

  • Koury MJ, Bondurant MC (1993) Prevention of programmed death in hematopoietic progenitor cells by hematopoietic growth factors. News Physiol Sci (NIPS) 8:170–174.

    CAS  Google Scholar 

  • Kraus M, Krueger GRF (1981) T- and B-cell determination in various lymphoid tissues of mice during N-nitrosobutylurea (NBU) leukemogenesis. J Cancer Res Clin Oncol 100:149–165.

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M, Siu G, Hood LE, Shastri N (1986) The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Annu Rev Immunol 4:529–591.

    Article  PubMed  CAS  Google Scholar 

  • Krueger GRF (1972) Chronic immunosuppression and lymphomagenesis in man and mice. Natl Cancer I Monogr 35:183–190.

    CAS  Google Scholar 

  • Krueger GRF (1985) Klinische immunpathologie. W. Kohlhammer, Stuttgart, Germany.

    Google Scholar 

  • Krueger GRF (1989a) The pathology of diphenylhydantoin-induced lymphoproliferative reactions in animals. In: Kammueller ME, Blocksma N, Deinen W (ed) Autoimmunity and toxicology Elsevier, Amsterdam, The Netherlands, pp 391–413.

    Google Scholar 

  • Krueger GRF (1989b) Abnormal variation of the immune system as related to cancer. In: Kaiser HE (ed) Cancer growth and progression Kluwer, Dordrecht, The Netherlands, pp 139–161.

    Google Scholar 

  • Krueger GRF (1993) Pathology of lymphoproliferative disorders in HIV infection. In: Schrappe M, Mauff G (ed) AIDS-SIDA, a comparison between Europe and Africa. Ed Roche, Basel pp 239–253.

    Google Scholar 

  • Krueger GRF, Ferrer Argote V (1994) A unifying concept of viral immunopathogeneis of proliferative and aproliferative diseases (working hypothesis). In Vivo 8:493–500.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Malmgren RA, Berard CW (1971) Malignant lymphomas and plasmacytosis in mice under chronic immunosuppression and persistent antigenic stimulation. Transplantation 11:128–144.

    Article  Google Scholar 

  • Krueger G, Fischer RM, Flesch HG (1979) Sequential changes in T- and B-cells, virus antigen expression and primary histologic diagnosis in virus-induced lymphomagenesis in mice. Zeitschrift fuer Krebsforschung 92:41–54.

    Google Scholar 

  • Krueger GRF, Karpinski A, Heine UI, Koch B (1983) Differentiation block of prethymic lymphocytes during Moloneyvirus induced lymphoma development associated with a thymic epitheliel defect. J Cancer Res Clin Oncol 106:153–157.

    Article  PubMed  CAS  Google Scholar 

  • Krueger GRF, Stolzenburg T, Muller C (1987a) Cell membrane lipid fluidity and receptor expression in Moloney- and Friendvirus transformed cells. In Vivo 1:343–246.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Papadakis T, Schaefer HJ (1987b) Persistent active Epstein-Barr virus infection and atypical lymphoproliferation. Am J Surg Pathol 11:972–981.

    Article  PubMed  CAS  Google Scholar 

  • Krueger GRF, Ablashi DV, Salahuddin SZ, Josephs SF (1988) Diagnosis and differential diagnosis of progressive lymphoproliferation and malignant lymphoma in persistent active herpesvirus infection. J Virol Methods 21:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Krueger GRF, Bertram G, Ramon A, Koch B, Ablashi DV, Brandt ME, Wang G, Buja LM (2001a) Dynamics of infection with human herpesvirus-6 in EBV-negative infectious mononucleosis: data acquisition for computer modeling. In Vivo 15:373–380.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Koch B, Hoffmann A, Rojo J, Brandt ME, Wang G, Buja LM (2001b) Dynamics of chronic active herpesvirus-6 infection in patients with chronic fatigue syndrome: data acquisition for computer modeling. In Vivo 15:461–466.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Nguyen A, Uthman M, Brandt ME, Buja LM (2001c) Dysregulative lymphoma theory revisited: what can we learn from cytokines, CD classes and genes? Anticancer Res 21:3653–3662.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Koch B, Deninger Weldner J, Tymister G, Ramon A, Brandt ME, Wang G, Buja LM (2002a) Dynamics of active progressive infection with HIV1: data acquisition for computer modeling. In Vivo 15:513–518.

    Google Scholar 

  • Krueger GRF, Brandt ME, Wang G, Buja LM (2002b) Dynamics of HTLV-1 leukemogenesis: data acquisition for computer modeling. In Vivo 16:87–92.

    PubMed  Google Scholar 

  • Krueger GRF, Marshall GR, Junker U, Schroeder H, Buja LM, Brandt ME, Wang G (2002c) Growth Factors, Cytokines, Chemokines and Neuropeptides in the Modeling of T-Cells, In Vivo 16:365–386.

    PubMed  CAS  Google Scholar 

  • Krueger GRF, Brandt ME, Wang G, Berthold F, Buja LM (2002d) A computational analysis of Canale-Smith syndrome: chronic lymphadenopathy simulating malignant lymphoma. Anticancer Res 22:2365–2372.

    PubMed  Google Scholar 

  • Krueger GRF, Brandt ME, Wang G, Buja LM (2003) TCM-1: A nonlinear dynamical computational model to simulate cellular changes in the T cell system; Conceptional design and validation, Anticancer Res 23:123–136.

    PubMed  Google Scholar 

  • Le PT, Adams KL, Zaya N, Mathews HL, Storkus WJ, Ellis TM (2001) Human thymic epithelial cells inhibit IL-15 and IL-2 driven differentiation of NK cells from the early human thymic progenitors. J Immunol 166:2194–2201.

    PubMed  CAS  Google Scholar 

  • Leclercq G, Plum J (1996) Thymic and extrathymic T cell development. Leukemia 10:1853–1859.

    PubMed  CAS  Google Scholar 

  • Liu CP, Auerbach R (1991) Ontogeny of murine T cells: thymus-regultade development of T cell receptor-bearing cells derived from embryonal yolk sac. Eur J Immunol 21:1849–1855.

    Article  PubMed  CAS  Google Scholar 

  • Lobach DF, Haynes BF (1987) Ontogeny of the human thymus during fetal development. J Clin Immunol 7:81–97.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald WA, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymuc. J Exp Med 194:1003–1012.

    Article  PubMed  Google Scholar 

  • Marrack P, Lo D, Brinster R, Palmiter R, Burkly L, Flavell RH, Kappler J (1988) The effect of thymus environment on T cell development and tolerance. Cell 53:627–634.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (1971) The nature of leukemia: neoplasm or disorder of haematopoietic regulation? Med J Australia 2:739–746.

    PubMed  CAS  Google Scholar 

  • Miescher C, Howe RC, Budd RC, MacDonald HR (1988) Expression of T-cell receptors by functionally distinct subsets of immature adult thymocytes. Ann NY Acad Sci 532:8–17.

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Saida T, Fujita M, Kitahara Y, Hirono N (1987) Familial cases of HTLV-1 associated myelopathy. Ann Neurol 22:601–605.

    Article  PubMed  CAS  Google Scholar 

  • Mollet L, Tai-Sheng L, Samri A, Tournai C, Tubiana R, Calvez V, Debre P, Katlama C, Autran B (2000) Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load. J Immunol 165:1692–1704.

    PubMed  CAS  Google Scholar 

  • Montecino-Rogriguez E, Truong LT, Henderson AJ (2001) Long-term bone marrow cultures provide access to early lymphoid progenitors. J Hematother Stem Cell Res 10:107–114.

    Article  Google Scholar 

  • Nakauchi H, Sudo K, Ema H (2001) Quantitative assessment of the stem cell self-renewal capacity. Ann NY Acad Sci 938:18–24.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Aging Dev 117:57–68.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan NL, Skaandera CA, Montgomry PC (2001) Development of T cell lineages in rat lacrimal glands. J Curr Eye Res 22:375–383.

    Article  Google Scholar 

  • Paul W (1999) Fundamental immunology. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Paraskevas F, Foerster J (1999) The lymphatic system (Chapter 18). In: Lee GR, Foerster J, Lukens J, Paraskevas F, Rodger G (ed) Wintrob’s clinical hematology, 10th edn. Williams & Wilkins, Baltimore pp 430–463.

    Google Scholar 

  • Pawelec G, Muller R, Rehbein A, Hahnel K, Ziegler BL (1998) Extrathymic T cell differentiation in vitro from human CD34 + stem cells. J Leukoc Biol 64:733–739.

    PubMed  CAS  Google Scholar 

  • Pawelec G, Muller R, Rehbein A, Hahnel K, Ziegler BL (1999) Finite life spans of t cell clones derived from CD34+ human haematopoietic stem cells in vitro. Exp Gerontol 34:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation mice on CXCR4. Science 283:845–848.

    Article  PubMed  CAS  Google Scholar 

  • Pestano GA, Zhou Y, Trimble LA, Daley J, Weber GF, Cantor H (1999) Inactivation of misselected CD8 T cells by CD8 gene methylation and cell death. Science 284: 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  • Petri HT, Livak F, Burtrum D, Mazel ST (1995) T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J Exp Med 182:121–127.

    Article  Google Scholar 

  • Plum J (1999) Can T cell immunity in an adult be regenerated? Verhandlingen af Koninglike Akademie for Geneeskunde Belgie 61:457–464.

    CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419.

    Article  PubMed  CAS  Google Scholar 

  • Purtilo DT, Tatsumi E, Manolov G, Manolova Y, Harada S, Lipscomb H, Krueger GRF (1985) Epstein-Barr virus as an etiological agent in the pathogenesis of lymphoproliferative and aproliferative diseases in immune deficient patients. Int Rev Exp Pathol 27:113–183.

    PubMed  CAS  Google Scholar 

  • Robetamanith T, Schroder B, Bug G, Muller P, Klenner T, Knaus R, Hoelzer D, Ottmann OG (2001) Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of scid repopulating cells. Stem Cells 19:313–320.

    Article  Google Scholar 

  • Robey E (1999) T cell fate by notch. Annu Rev Immunol 17:283–295.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani P, Annunziato F, Piccini MP, Maggi E, Romagnani S (2000) Cytokines and chemokines in T lymphopoiesis and T cell effector function. Trends Immunol Today 21:416–418.

    Article  CAS  Google Scholar 

  • Rothenberg E, Lugo JP (1985) Differentiation and cell division in the mammalian thymus. Dev Biol 112:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez M, Alfani E, Visconti G, Passarelli AM, Migliaccio AR, Migliaccio G (1998) Thymus-independent T-cell differentiation in vitro. Brit J Haematol 103:1198–1205.

    Article  CAS  Google Scholar 

  • Sarun S, Dalloul AH, Laurent C, Blanc C, Schmitt C (1998) Human CD34+ thymocyte maturation: pre-T and NK cell differentiation on neonatal thymic stromal cell culture. Cell Immunol 190:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Sasada T, Reinherz EL (2001) A critical role for CD2 in both thymic selection events and mature T cell function. J Immunol 166:2394–2403.

    PubMed  CAS  Google Scholar 

  • Schonnebeck M, Krueger GRF, Braun M, Fischer M, Koch B, Ablashi DV, Balachandran N (1991) Human herpesvirus-6 infection may predispose cells for superinfection by other viruses. In Vivo 5:255–264.

    PubMed  CAS  Google Scholar 

  • Segel LA, Bar-Or RL (1999) On the role of feedback in promoting conflicting goals of the adaptive immune system. J Immunol 163:1342–1349.

    PubMed  CAS  Google Scholar 

  • Sen J (2001) Signal transduction in thymus development. Cell Mol Biol 47:197–215.

    PubMed  CAS  Google Scholar 

  • Sing GK, Keller JR, Ellingsworth LR, Ruscetti FW (1988) Transforming growth factor-a selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood 72:1504–1511.

    PubMed  CAS  Google Scholar 

  • Singh VK, Biswas S, Mathur KB, Haq W, Garg SK, Agarwal SS (1998) Thymopentin and splenopentin as immunomodulators; Current status. Immunol Res 17:345–368.

    Article  PubMed  CAS  Google Scholar 

  • Smith DJ, Forrest S, Ackley DH, Perelson AS Smith (1998) Using lazy evaluation to simulate realistic-size repertoires in models of the immune system. Bull Math Biol 60:647–658.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel HM, Ogg GS, DeFalcon E, Sheehy ME, Monard S, Haslett PA, Gillespie G, Donahoe SM, Pollack H, Borkowsky W, McMichael AJ, Nixon DF (2000) Human immunodeficiency virus type 1- and cytomegalovirus-specific cytotoxic T lymphocytes can persist at high frequency for prolonged periods in the absence of circulating peripheral CD4(+) T cells. J Virol 74:1018–1022.

    Article  PubMed  CAS  Google Scholar 

  • Stutman O (1978) Intrathymic and extrathymic T-cell maturation. Immunol Rev 42:138–184.

    Article  PubMed  CAS  Google Scholar 

  • Surh CD, Sprent J (1999). The thymus and T-cell development (Chapter 9) In: Gallin JI et al. (ed) Inflammation: basic principles and clinical correlates Lippincott Williams & Wilkins, Philadelphia pp 137–149.

    Google Scholar 

  • Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanaba M, Hibi T, Yamamoto H, Kubota E, Kaminogawa S, Ishikawa H (2000) Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 13:691–702.

    Article  PubMed  CAS  Google Scholar 

  • Szewczuk Z, Wieczorek Z, Stefanowicz P, Wilczynski A, Siemion IZ (1997) Further investigations on thymopentin-like fragments of HLA-DQ and their analogs. Arch Immunol Exp Ther (Warsaw) 45:335–341.

    CAS  Google Scholar 

  • Tedder TF, Steeber DA, Chen A, Engel P (1995) The selectins: vascular adhesion molecules. FASEB J 9:866–873.

    PubMed  CAS  Google Scholar 

  • Theodor L, Shoham J, Berger R, Gokkel E, Trachtenbrot L, Simon AJ, Brok-Simon F, Nir U, Ilan E, Zevin-Sonkin D, Friedman E, Rechavi G (1997) Ubiquitous expression of a cloned murine thymopoietin cdna. Acta Haematol 97:153–163.

    Article  PubMed  CAS  Google Scholar 

  • Thiele J, Wickenhauser C, Baldus SE, Kuemmel T, Zirbes TK, Drebber U, Wirtz R, Thiel A, Hansmann ML, Fischer R (1995) Characterization of CD34+ human hematopoietic progenitor cells from the peripheral blood: enzyme-, carbohydrate- and immunocytochemistry, morphometry, and ultrastructure. Leukemia Lymphoma 16:483–491.

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H (1977) Adult T cell leukemia: clinical and hematological features of 16 cases. Blood 50:481–492.

    PubMed  CAS  Google Scholar 

  • Varas A, Vicente A, Sacedon R, Zapata AG (1998) Interleukin-7 influences the development of thymic dendritic cells. Blood 92:93–100.

    PubMed  CAS  Google Scholar 

  • Warrender C, Forrest S and Segel L (2001) Effective feedback in the immune system. In: Genetic and Evolutionary Computation Conference Workshop Program. Morgan & Kaufmann, pp 329–332.

    Google Scholar 

  • Weber PJ, Eckhard CP, Gonser S, Otto H, Folkers G, Beck-Sickinger AG (1999) On the role of thymopoietins in cell proliferation. Immunochemical evidence for new members of the human thymopoietin family. Biol Chem380:653–660.

    Article  PubMed  CAS  Google Scholar 

  • Wognum AW, DeJong MO, Wagemaker G (1996) Differential expression of receptors for hematopoietic growth factors on subsets of CD34+ hemopoietic cells. Leukemia Lymphoma 24:11–25.

    Article  PubMed  CAS  Google Scholar 

  • Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188:2205–2213.

    Article  PubMed  CAS  Google Scholar 

  • Zajac AJ, Vance RE, Held W, Sourdive DJ, Altman JD, Raulet DH, Ahmed R (1999) Impaired anti-viral T cell responses due to expression of the Ly49A inhibitory receptor. J Immunol (Baltimore, MD.; 1950) 163:5526–5534.

    PubMed  CAS  Google Scholar 

  • Zevin-Sonkin D, Ilan E, Guthmann D, Riss J, Theodor L, Shoham J (1992) Molecular cloning of bovine thymopoietin gene and its expression in different calf issues: evidence for a predominant expression in thymocytes. Immunol Lett 31:301–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Brandt, M.E., Krueger, G.R.F., Wang, G. (2008). A biodynamical model of human T-cell development and pathology: design, testing and validation. In: Kaiser, H.E., Nasir, A. (eds) Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response. Cancer Growth and Progression, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6729-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6729-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6728-0

  • Online ISBN: 978-1-4020-6729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics