Skip to main content

Immunological aspects of Marek’s disease virus (MDV)-induced lymphoma progression

Immune Suppression and Modulation

  • Chapter
Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response

Part of the book series: Cancer Growth and Progression ((CAGP,volume 11))

Abstract

Marek’s disease is a highly transmissible T-cell lymphoma of chickens caused by the only known acutely transforming alphaherpesvirus, Marek’s disease virus (MDV). Losses due to MDV-induced tumors (lymphomas, skin leukoses, etc.) have been minimized in poultry production since the early 1970s through the use of non-sterilizing vaccines. Initial lymphoma development in MDV-infected chickens is dependent on the challenge strain of MDV, the genetic susceptibility of the exposed chickens, the level of challenge and relative exposure to other adventitious agents. In this chapter, we examine the factors affecting the progression of MDV-induced, CD4+ T-lymphomas as a consequence of the immune insult incurred by the host during early lytic and latent phases of MDV infection, and as a consequence of the factors expressed by the transformed T-lymphoblasts. A special emphasis has been placed on the role of de-regulated host surface antigen expression on lymphoma progression. Several of these antigens (CD29/CD49e, CD30, CD44) are common to invasive and metastatic human lymphomas, suggesting common mechanisms of immune modulation in lymphoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afonso CL, Tulman ER, Lu Z, Zsak L, Rock DL, Kutish GF (2001) The genome of turkey herpesvirus. J Virol 75(2):971–978.

    PubMed  CAS  Google Scholar 

  • Akisik E, Bavbek S, Dalay N (2002) CD44 variant exons in leukemia and lymphoma. Pathol Oncol Res 8(1):36–40.

    PubMed  CAS  Google Scholar 

  • Anderson AS, Parcells MS, Morgan RW (1998) The glycoprotein D (US6) homolog is not essential for oncogenicity or horizontal transmission of Marek’s disease virus. J Virol 72(3):2548–2553.

    PubMed  CAS  Google Scholar 

  • Anobile JM, Arumugaswami V, Downs D, Czymmek K, Parcells M, and Schmidt CJ (2006) Nuclear Localization and Dynamic Properties of the Marek’s Disease Virus Oncogene Products Meq and Meq/vIL8. J Virol 80:1160–1166.

    PubMed  CAS  Google Scholar 

  • Arnulf B, Villemain A, Nicot C, Mordelet E, Charneau P, Kersual J, Zermati Y, Mauviel A, Bazarbachi A, Hermine O (2002) Human T-cell lymphotropic virus oncoprotein Tax represses TGF-beta 1 signaling in human T cells via c-Jun activation: a potential mechanism of HTLV-I leukemogenesis. Blood 100(12):4129–4138.

    PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1993) Influence of B-haplotype on the relative efficacy of Marek’s disease vaccines of different serotypes. Avian Dis 37(1):53–59.

    PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL (1994) Serotype specificity of B-haplotype influence on the relative efficacy of Marek’s disease vaccines. Avian Dis 38(1):65–71.

    PubMed  CAS  Google Scholar 

  • Bacon LD, Witter RL, Crittenden LB, Fadly A, Motta J (1981) B-haplotype influence on Marek’s disease, Rous sarcoma, and lymphoid leukosis virus-induced tumors in chickens. Poult Sci 60(6):1132–1139.

    PubMed  CAS  Google Scholar 

  • Bacon LD, Crittenden LB, Witter RL, Fadly A, Motta J (1983) B5 and B15 associated with progressive Marek’s disease, Rous sarcoma, and avian leukosis virus-induced tumors in inbred 15I4 chickens. Poult Sci 62(4):573–578.

    PubMed  CAS  Google Scholar 

  • Bacon LD, Vallejo RL, Cheng HH, Witter RL (1996) Failure of RFP-Y genes to influence resistance to Marek’s disease. Paper presented at the 5th International Symposium on Marek’s Disease. East Lansing, MI.

    Google Scholar 

  • Baigent SJ, Ross LJ, Davison TF (1998) Differential susceptibility to Marek’s disease is associated with differences in number, but not phenotype or location, of pp38+ lymphocytes. J Gen Virol 79(Pt 11):2795–2802.

    PubMed  CAS  Google Scholar 

  • Barrow AD, Burgess SC, Howes K, Nair VK (2003) Monocytosis is associated with the onset of leukocyte and viral infiltration of the brain in chickens infected with the very virulent Marek’s disease virus strain C12/130. Avian Pathol 32(2):183–191.

    PubMed  Google Scholar 

  • Beasley JN, Patterson LT, McWade DH (1970) Transmission of Marek’s disease by poultry house dust and chicken dander. Avian Dis 14(1):45–53.

    Google Scholar 

  • Bengtsson A, Scheynius A, Avila-Carino J (2000) Crosslinking of CD30 on activated human Th clones enhances their cytokine production and downregulates the CD30 expression. Scand J Immunol 52(6):595–601.

    PubMed  CAS  Google Scholar 

  • Berg LP, James MJ, Alvarez-Iglesias M, Glennie S, Lechler RI, Marelli-Berg FM (2002) Functional consequences of noncognate interactions between CD4+ memory T lymphocytes and the endothelium. J Immunol 168(7):3227–3234.

    PubMed  CAS  Google Scholar 

  • Biggs PM, Thorpe RJ, Payne LN (1968) Studies on genetic resistance to Marek’s disease in the domestic chicken. Br Poult Sci 9(1):37–52.

    PubMed  CAS  Google Scholar 

  • Blase L, Daniel PT, Koretz K, Schwartz-Albiez R, Moller P (1995) The capacity of human malignant B-lymphocytes to disseminate in SCID mice is correlated with functional expression of the fibronectin receptor alpha 5 beta 1 (CD49e/CD29). Int J Cancer 60(6):860–866.

    PubMed  CAS  Google Scholar 

  • Bradley G, Hayashi M, Lancz G, Tanaka A, Nonoyama M (1989a) Structure of the Marek’s disease virus bamhi-H gene family: genes of putative importance for tumor induction. J Virol 63(6):2534–2542.

    PubMed  CAS  Google Scholar 

  • Bradley G, Lancz G, Tanaka A, Nonoyama M (1989b) Loss of Marek’s disease virus tumorigenicity is associated with truncation of rnas transcribed within bamhi-H. J Virol 63(10):4129–4135.

    PubMed  CAS  Google Scholar 

  • Briles WE, Briles RW, Taffs RE, Stone HA (1983) Resistance to a malignant lymphoma in chickens is mapped to subregion of major histocompatibility (B) complex. Science 219(4587):977–979.

    PubMed  CAS  Google Scholar 

  • Briles WE, Goto RM, Auffray C, Miller MM (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37(6):408–414.

    PubMed  CAS  Google Scholar 

  • Brown AC, Baigent SJ, Smith LP, Chattoo JP, Petherbridge LJ, Hawes P, Allday MJ, Nair V (2006) Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek’s disease virus. Proc Natl Acad Sci 103(6):1687–1692.

    PubMed  CAS  Google Scholar 

  • Bumstead JM, Payne LN (1987) Production of an immune suppressor factor by Marek’s disease lymphoblastoid cell lines. Vet Immunol Immunopathol 16(1–2):47–66.

    PubMed  CAS  Google Scholar 

  • Bumstead N (1998) Genetic resistance to avian viruses. Rev Sci Tech 17(1):249–255.

    PubMed  CAS  Google Scholar 

  • Bumstead N, Sillibourne J, Rennie M, Ross N, Davison F (1997) Quantification of Marek’s disease virus in chicken lymphocytes using the polymerase chain reaction with fluorescence detection. J Virol Methods 65(1):75–81.

    PubMed  CAS  Google Scholar 

  • Burgess SC, Davison TF (1999) A quantitative duplex PCR technique for measuring amounts of cell-associated Marek’s disease virus: differences in two populations of lymphoma cells. J Virol Methods 82(1):27–37.

    PubMed  CAS  Google Scholar 

  • Burgess SC, Davison TF (2002) Identification of the neoplastically transformed cells in Marek’s disease herpesvirus-induced lymphomas: recognition by the monoclonal antibody AV37. J Virol 76(14):7276–7292.

    PubMed  CAS  Google Scholar 

  • Burgess SC, Venugopal KN (2002) Anti-tumor immune responses after infection with the Marek’s disease and avian leukosis oncogenic viruses of poultry. In: Mathew T (ed) Modern concept of immunology in veterinary medicine–poultry immunology. Thajema Publishing, pp 236–291.

    Google Scholar 

  • Burgess SC, Basaran BH, Davison TF (2001) Resistance to Marek’s disease herpesvirus- induced lymphoma is multiphasic and dependent on host genotype. Vet Pathol 38(2):129–142.

    PubMed  CAS  Google Scholar 

  • Burgess SC, Young JR, Baaten BJ, Hunt L, Ross LN, Parcells MS, Kumar PM, Tregaskes CA, Lee LF, and Davison TF (2004) Marek’s disease is a natural model for lymphomas overexpressing Hodgkin’s disease antigen (CD30). Proc Natl Acad Sci USA 101:13879–13884.

    PubMed  CAS  Google Scholar 

  • Buscaglia C, Calnek BW (1988) Maintenance of Marek’s disease herpesvirus latency in vitro by a factor found in conditioned medium. J Gen Virol 69(Pt 11):2809–2818.

    PubMed  Google Scholar 

  • Buscaglia C, Calnek BW, Schat KA (1988) Effect of immunocompetence on the establishment and maintenance of latency with Marek’s disease herpesvirus. J Gen Virol 69(Pt 5):1067–1077.

    PubMed  Google Scholar 

  • Calnek BW (1982) Marek’s disease vaccines. Dev Biol Stand 52:401–405.

    PubMed  CAS  Google Scholar 

  • Calnek BW (1985) Genetic resistance. In Payne LN (ed) Marek’s disease. Scientific basis and methods of control. Martinus Nijhoff Publishing, Boston, pp 293–328.

    Google Scholar 

  • Calnek BW (1986) Marek’s disease–a model for herpesvirus oncology. Crit Rev Microbiol 12(4):293–320.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Witter RL (1997) Marek’s disease. In Calnek BW (ed) Diseases of poultry. 10th edn. Iowa State University Press, Ames, IA, pp 367–413.

    Google Scholar 

  • Calnek BW, Adldinger HK, Kahn DE (1970) Feather follicle epithelium: a source of enveloped and infectious cell- free herpesvirus from Marek’s disease. Avian Dis 14(2):255–267.

    Google Scholar 

  • Calnek BW, Carlisle JC, Fabricant J, Murthy KK, Schat KA (1979) Comparative pathogenesis studies with oncogenic and nononcogenic Marek’s disease viruses and turkey herpesvirus. Am J Vet Res 40(4):541–548.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Shek WR, Schat KA (1981) Spontaneous and induced herpesvirus genome expression in Marek’s disease tumor cell lines. Infect Immun 34(2):483–491.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Schat KA, Ross LJ, Shek WR, Chen CL (1984) Further characterization of Marek’s disease virus-infected lymphocytes. I. In vivo infection. Int J Cancer 33(3):389–398.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Adene DF, Schat KA, Abplanalp H (1989a) Immune response versus susceptibility to Marek’s disease. Poult Sci 68(1):17–26.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Lucio B, Schat KA, Lillehoj HS (1989b) Pathogenesis of Marek’s disease virus- induced local lesions. 1. Lesion characterization and cell line establishment. Avian Dis 33(2):291–302.

    PubMed  CAS  Google Scholar 

  • Calnek BW, Harris RW, Buscaglia C, Schat KA, Lucio B (1998) Relationship between the immunosuppressive potential and the pathotype of Marek’s disease virus isolates. Avian Dis 42(1):124–132.

    PubMed  CAS  Google Scholar 

  • Cantello JL, Anderson AS, Morgan RW (1994) Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek’s disease virus. Virology 204(1):242–250.

    Google Scholar 

  • Cantello JL, Parcells MS, Anderson AS, Morgan RW (1997) Marek’s disease virus latency- associated transcripts belong to a family of spliced RNAs that are antisense to the ICP4 homolog gene. J Virol 71(2):1353–1361.

    PubMed  CAS  Google Scholar 

  • Carpenter SL, Sevoian M (1983) Cellular immune response to Marek’s disease: listeriosis as a model of study. Avian Dis 27(2):344–356.

    PubMed  CAS  Google Scholar 

  • Chang KS, Lee SI, Ohashi K, Ibrahim A, Onuma M (2002) The detection of the meq gene in chicken infected with Marek’s disease virus serotype 1. J Vet Med Sci 64(5):413–417.

    PubMed  CAS  Google Scholar 

  • Chen XB, Sondermeijer PJ, Velicer LF (1992) Identification of a unique Marek’s disease virus gene which encodes a 38-kilodalton phosphoprotein and is expressed in both lytically infected cells and latently infected lymphoblastoid tumor cells. J Virol 66(1):85–94.

    PubMed  CAS  Google Scholar 

  • Chiarle R, Podda A, Prolla G, Gong J, Thorbecke GJ, Inghirami G (1999) CD30 in normal and neoplastic cells. Clin Immunol 90(2):157–164.

    PubMed  CAS  Google Scholar 

  • Chilton FH, Fonteh AN, Johnson MM, Surette ME (1997) Metabolism of Arachidonic Acid. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung–scientific foundations, Vol. 1. Lippincott-Raven, Philadelphia, pp 77–88.

    Google Scholar 

  • Coleman RM, Schierman LW (1982) Transplantable Marek’s disease lymphomas. I. Growth characteristics during development in two inbred lines of chickens. Avian Dis 26(2):245–256.

    PubMed  CAS  Google Scholar 

  • Confer AW, Adldinger HK, Buening GM (1980) Cell-mediated immunity in Marek’s disease: correlation of disease-related variables with immune responses in age-resistant chickens. Am J Vet Res 41(3):313–318.

    PubMed  CAS  Google Scholar 

  • Corbel C, Bluestein HG, Pourquie O, Vaigot P, Le Douarin NM (1992) An antigen expressed by avian neuronal cells is also expressed by activated T lymphocytes. Cell Immunol 141(1):99–110.

    PubMed  CAS  Google Scholar 

  • Corbel C, Pourquie O, Cormier F, Vaigot P, Le Douarin NM (1996) BEN/SC1/DM-GRASP, a homophilic adhesion molecule, is required for in vitro myeloid colony formation by avian hemopoietic progenitors. Proc Natl Acad Sci USA 93(7):2844–2849.

    PubMed  CAS  Google Scholar 

  • Cui ZZ, Yan D, Lee LF (1990) Marek’s disease virus gene clones encoding virus-specific phosphorylated polypeptides and serological characterization of fusion proteins. Virus Genes 3(4):309–322.

    PubMed  CAS  Google Scholar 

  • Delecluse HJ, Hammerschmidt W (1993) Status of Marek’s disease virus in established lymphoma cell lines: herpesvirus integration is common. J Virol 67(1):82–92.

    PubMed  CAS  Google Scholar 

  • Delecluse HJ, Schuller S, Hammerschmidt W (1993) Latent Marek’s disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J 12(8):3277–3286.

    PubMed  CAS  Google Scholar 

  • Dienglewicz RL, Parcells MS (1999) Establishment of a lymphoblastoid cell line using a mutant MDV containing a green fluorescent protein expression cassette. Acta Virol 43:106–112.

    PubMed  CAS  Google Scholar 

  • DiFronzo NL, Schierman LW (1990) Transplantable Marek’s disease lymphomas. IV. Differences in lethality of lymphoma cell lines determined by route of inoculation. J Immunol 144(12):4883–4887.

    PubMed  CAS  Google Scholar 

  • Djeraba A, Kut E, Rasschaert D, Quere P (2002a) Antiviral and antitumoral effects of recombinant chicken myelomonocytic growth factor in virally induced lymphoma. Int Immunopharmacol 2(11):1557–1566.

    PubMed  CAS  Google Scholar 

  • Djeraba A, Musset E, Lowenthal JW, Boyle DB, Chausse AM, Peloille M, Quere P (2002b) Protective effect of avian myelomonocytic growth factor in infection with Marek’s disease virus. J Virol 76(3):1062–1070.

    PubMed  CAS  Google Scholar 

  • Djeraba A, Musset E, van Rooijen N, Quere P (2002c) Resistance and susceptibility to Marek’s disease: nitric oxide synthase/arginase activity balance. Vet Microbiol 86(3):229–244.

    PubMed  CAS  Google Scholar 

  • Falini B, Stein H, Pileri S, Canino S, Farabbi R, Martelli MF, Grignani F, Fagioli M, Minelli O, Ciani C et al. (1987) Expression of lymphoid-associated antigens on Hodgkin’s and Reed- Sternberg cells of Hodgkin’s disease. An immunocytochemical study on lymph node cytospins using monoclonal antibodies. Histopathology 11(12):1229–1242.

    PubMed  CAS  Google Scholar 

  • Fragnet L, Blasco MA, Klapper W, Rasschaert D (2003) The RNA subunit of telomerase is encoded by Marek’s disease virus. J Virol 77(10):5985–5996.

    PubMed  CAS  Google Scholar 

  • Gavine PR, Neil JC, Crouch DH (1999) Protein stabilization: a common consequence of mutations in independently derived v-Myc alleles. Oncogene 18(52):7552–7558.

    PubMed  CAS  Google Scholar 

  • Gimeno IM, Witter RL, Reed WM (1999) Four distinct neurologic syndromes in Marek’s disease: effect of viral strain and pathotype. Avian Dis 43(4):721–737.

    PubMed  CAS  Google Scholar 

  • Gimeno IM, Witter RL, Neumann U (2002) Neuropathotyping: a new system to classify Marek’s disease virus. Avian Dis 46:909–918.

    PubMed  Google Scholar 

  • Harlin H, Podack E, Boothby M, Alegre ML (2002) TCR-independent CD30 signaling selectively induces IL-13 production via a TNF receptor-associated factor/p38 mitogen-activated protein kinase-dependent mechanism. J Immunol 169(5):2451–2459.

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Nomura T, Kishimoto K, Yanagisawa K, Fujita S (1998) SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with alpha 5 beta 1 integrin and regulates adhesion of human T cell leukemia virus type 1-infected T cells to fibronectin. J Immunol 161(6):3087–3095.

    PubMed  CAS  Google Scholar 

  • Haynes BF, Liao HX, Patton KL (1991) The transmembrane hyaluronate receptor (CD44): multiple functions, multiple forms. Cancer Cells 3(9):347–350.

    PubMed  CAS  Google Scholar 

  • Heier BT, Jarp J (2000) Risk factors for Marek’s disease and mortality in white Leghorns in Norway. Prev Vet Med 44(3–4):153–165.

    PubMed  CAS  Google Scholar 

  • Hirai K, Ikuta K, Kitamoto N, Kato S (1981) Latency of herpesvirus of turkey and Marek’s disease virus genomes in a chicken T-lymphoblastoid cell line. J Gen Virol 53(Pt 1):133–143.

    PubMed  CAS  Google Scholar 

  • Hong Y, Coussens PM (1994) Identification of an immediate-early gene in the Marek’s disease virus long internal repeat region which encodes a unique 14-kilodalton polypeptide. J Virol 68(6):3593–3603.

    PubMed  CAS  Google Scholar 

  • Hong Y, Frame M, Coussens PM (1995) A 14-kDa immediate-early phosphoprotein is specifically expressed in cells infected with oncogenic Marek’s disease virus strains and their attenuated derivatives. J Vet Med Sci 57(1):157–160.

    Google Scholar 

  • Hrdlickova R, Nehyba J, Humphries EH (1994) V-rel induces expression of three avian immunoregulatory surface receptors more efficiently than c-rel. J Virol 68(1):308–319.

    PubMed  CAS  Google Scholar 

  • Hunt HD, Lupiani B, Miller MM, Gimeno I, Lee LF, Parcells MS (2001) Marek’s disease virus down-regulates surface expression of MHC (B Complex) Class I (BF) glycoproteins during active but not latent infection of chicken cells. Virology 282(1):198–205.

    PubMed  CAS  Google Scholar 

  • Ikuta K, Kitamoto N, Shoji H, Kato S, Naiki M (1981a) Expression of Forssman antigen of avian lymphoblastoid cell lines transformed by Marek’s disease virus or avian leukosis virus. J Gen Virol 52(Pt 1):145–151.

    PubMed  CAS  Google Scholar 

  • Ikuta K, Kitamoto N, Shoji H, Kato S, Naiki M (1981b) Hanganutziu and Deicher type heterophile antigen expressed on the cell surface of Marek’s disease lymphoma-derived cell lines. Biken J 24(1–2):23–37.

    PubMed  CAS  Google Scholar 

  • Inman GJ, Allday MJ (2000) Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt’s lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines. J Gen Virol 81 (Pt 6):1567–1578.

    PubMed  CAS  Google Scholar 

  • Izumiya Y, Jang HK, Ono M, Mikami T (2001) A complete genomic DNA sequence of Marek’s disease virus type 2, strain HPRS24. Curr Top Microbiol Immunol 255:191–221.

    PubMed  CAS  Google Scholar 

  • Jakovleva LS, Mazurenko NP (1979) Increased susceptibility of leukemia-infected chickens to Marek’s disease. Neoplasma 26(4):393–396.

    PubMed  CAS  Google Scholar 

  • Jones D, Lee L, Liu JL, Kung HJ, Tillotson JK (1992) Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors [published erratum appears in Proc Natl Acad Sci USA 1993 Mar 15;90 (6):2556]. Proc Natl Acad Sci USA 89(9):4042–4046.

    PubMed  CAS  Google Scholar 

  • Jones D, Brunovskis P, Witter R, Kung HJ (1996) Retroviral insertional activation in a herpesvirus: transcriptional activation of US genes by an integrated long terminal repeat in a Marek’s disease virus clone. J Virol 70(4):2460–2467.

    PubMed  CAS  Google Scholar 

  • Kaiser P, Underwood G, Davison F (2003) Differential cytokine responses following Marek’s disease virus infection of chickens differing in resistance to Marek’s disease. J Virol 77(1):762–768.

    PubMed  CAS  Google Scholar 

  • Kaplan MH, Dhar A, Brown TR, Sundick RS (1992) Marek’s disease virus-transformed chicken T-cell lines respond to lymphokines. Vet Immunol Immunopathol 34(1–2):63–79.

    PubMed  CAS  Google Scholar 

  • Kawai T, Kato A, Higashi H, Kato S, Naiki M (1991) Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor- associated sialic acid by gas chromatography-mass spectrometry. Cancer Res 51(4):1242–1246.

    PubMed  CAS  Google Scholar 

  • Kingham BF, Zelnik V, Kopacek J, Majerciak V, Ney E, Schmidt CJ (2001) The genome of herpesvirus of turkeys: comparative analysis with Marek’s disease viruses. J Gen Virol 82(Pt 5):1123–1135.

    PubMed  CAS  Google Scholar 

  • Kirby B, Owen CM, Blewitt RW, Yates VM (2002) Cutaneous T-cell lymphoma developing in a patient on cyclosporin therapy. J Am Acad Dermatol 47(2 Suppl):S165–167.

    PubMed  Google Scholar 

  • Kishi M, Harada H, Takahashi M, Tanaka A, Hayashi M, Nonoyama M, Josephs SF, Buchbinder A, Schachter F, Ablashi DV et al. (1988) A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek’s disease virus. J Virol 62(12):4824–4827.

    PubMed  CAS  Google Scholar 

  • Kishi M, Bradley G, Jessip J, Tanaka A, Nonoyama M (1991) Inverted repeat regions of Marek’s disease virus DNA possess a structure similar to that of the a sequence of herpes simplex virus DNA and contain host cell telomere sequences. J Virol 65(6):2791–2797.

    PubMed  CAS  Google Scholar 

  • Kralova J, Liss AS, Bargmann W, Bose Jr., HR, (1998) AP-1 factors play an important role in transformation induced by the v-rel oncogene. Mol Cell Biol 18(5):2997–3009.

    PubMed  CAS  Google Scholar 

  • Kung HJ, Xia L, Brunovskis P, Li D, Liu JL, Lee LF (2001) Meq: an MDV-specific bzip transactivator with transforming properties. Curr Top Microbiol Immunol 255:245–260.

    PubMed  CAS  Google Scholar 

  • Lakshmanan N, Lamont SJ (1998) Rfp-Y region polymorphism and Marek’s disease resistance in multitrait immunocompetence-selected chicken lines. Poult Sci 77(4):538–541.

    PubMed  CAS  Google Scholar 

  • Lee LF, Sharma JM, Nazerian K, Witter RL (1978a) Suppression and enhancement of mitogen response in chickens infected with Marek’s disease virus and the herpesvirus of turkeys. DTW Dtsch Tierarztl Wochenschr 85(8):325–328.

    Google Scholar 

  • Lee LF, Sharma JM, Nazerian K, Witter RL (1978b) Suppression of mitogen-induced proliferation of normal spleen cells by macrophages from chickens inoculated with Marek’s disease virus. Veterinarii a(5):99–101.

    Google Scholar 

  • Lee LF, Liu X, Sharma JM, Nazerian K, Bacon LD (1983) A monoclonal antibody reactive with Marek’s disease tumor-associated surface antigen. J Immunol 130(2):1007–1011.

    PubMed  CAS  Google Scholar 

  • Lee LF, Wu P, Sui D, Ren D, Kamil J, Kung HJ, Witter RL (2000) The complete unique long sequence and the overall genomic organization of the GA strain of Marek’s disease virus. Proc Natl Acad Sci USA 97(11):6091–6096.

    PubMed  CAS  Google Scholar 

  • Lee TH, Tempelis CH (1992) Possible 110?kDa receptor for interleukin 2 in the chicken. Dev Comp Immunol 16(6):463–472.

    PubMed  CAS  Google Scholar 

  • Levy AM, Heller ED, Leitner G, Davidson I (1999) Effect of native chicken interferon on MDV replication. Acta Virol 43(2–3):121–127.

    PubMed  CAS  Google Scholar 

  • Levy AM, Lzumiya Y, Brunovskis P, Xia L, Parcells MS, Reddy SM, Lee L, Chen HW, Kung HJ (2003) Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein Meq in Marek’s disease virus-transformed T cells. J Virol 77:12841–12851.

    PubMed  CAS  Google Scholar 

  • Levy AM, Gilad O, Xia L, Lzumiya Y, Choi J, Tsalenko A, Yakhini Z, Witter R, Lee L, Cardona CJ, Kung HJ (2005) Marek’s disease virus Meq transforms chicken cells via the v-jun transcriptional cascade: a converging transforming pathway for avian oncoviruses. Proc Natl Acad Sci USA 102:14831–14836.

    PubMed  CAS  Google Scholar 

  • Li D, O’Sullivan G, Greenall L, Smith G, Jiang C, Ross N (1998) Further characterization of the latency-associated transcription unit of Marek’s disease virus. Arch Virol 143(2):295–311.

    PubMed  CAS  Google Scholar 

  • Li DS, Pastorek J, Zelnik V, Smith GD, Ross LJ (1994) Identification of novel transcripts complementary to the Marek’s disease virus homologue of the ICP4 gene of herpes simplex virus. J Gen Virol 75(Pt 7):1713–1722.

    PubMed  CAS  Google Scholar 

  • Lim IG, Bertouch JV (2002) Remission of lymphoma after drug withdrawal in rheumatoid arthritis. Med J Australia 177(9):500–501.

    PubMed  Google Scholar 

  • Liu HC, Kung HJ, Fulton JE, Morgan RW, Cheng HH (2001) Growth hormone interacts with the Marek’s disease virus SORF2 protein and is associated with disease resistance in chicken. Proc Natl Acad Sci USA 98(16):9203–9208.

    PubMed  CAS  Google Scholar 

  • Liu JL, Lee LF, Ye Y, Qian Z, Kung HJ (1997) Nucleolar and nuclear localization properties of a herpesvirus bzip oncoprotein, MEQ. J Virol 71(4):3188–3196.

    PubMed  CAS  Google Scholar 

  • Liu JL, Ye Y, Lee LF, Kung HJ (1998) Transforming potential of the herpesvirus oncoprotein MEQ: morphological transformation, serum-independent growth, and inhibition of apoptosis. J Virol 72(1):388–395.

    PubMed  CAS  Google Scholar 

  • Liu JL, Ye Y, Qian Z, Qian Y, Templeton DJ, Lee LF, Kung HJ (1999) Functional interactions between herpesvirus oncoprotein MEQ and cell cycle regulator CDK2. J Virol 73(5):4208–4219.

    PubMed  CAS  Google Scholar 

  • Lucey DR, Clerici M, Shearer GM (1996) Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9(4):532–562.

    PubMed  CAS  Google Scholar 

  • Marek J (1907) Multiplenervenetzundung bei Huehnern. Dtsh Tieraerztl Wochenschr 15:417–421.

    Google Scholar 

  • Markowski-Grimsrud CJ, Schat KA (2002) Cytotoxic T lymphocyte responses to Marek’s disease herpesvirus-encoded glycoproteins. Vet Immunol Immunopathol 90(3–4):133–144.

    PubMed  CAS  Google Scholar 

  • McColl KA, Calnek BW, Harris WV, Schat KA, Lee LF (1987) Expression of a putative tumor-associated surface antigen on normal versus Marek’s disease virus-transformed lymphocytes. J Natl Cancer Inst 79(5):991–1000.

    PubMed  CAS  Google Scholar 

  • McKie EA, Ubukata E, Hasegawa S, Zhang S, Nonoyama M, Tanaka A (1995) The transcripts from the sequences flanking the short component of Marek’s disease virus during latent infection form a unique family of 3n-coterminal rnas. Virology 207(1):205–216.

    Google Scholar 

  • Miles AM, Reddy SM, Morgan RW (2001) Coinfection of specific-pathogen-free chickens with Marek’s disease virus (MDV) and chicken infectious anemia virus: effect of MDV pathotype. Avian Dis 45(1):9–18.

    PubMed  Google Scholar 

  • Miller MM, Goto R, Zoorob R, Auffray C, Briles WE (1994) Regions of homology shared by Rfp-Y and major histocompatibility B complex genes. Immunogenetics 39(1):71–73.

    PubMed  CAS  Google Scholar 

  • Miller MM, Goto RM, Taylor Jr., RL, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE (1996) Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci USA 93(9):3958–3962.

    PubMed  CAS  Google Scholar 

  • Morgan RW, Sofer L, Anderson AS, Bernberg EL, Cui J, Burnside J (2001) Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek’s disease virus. J Virol 75(1):533–539.

    PubMed  CAS  Google Scholar 

  • Mori N, Fujii M, Iwai K, Ikeda S, Yamasaki Y, Hata T, Yamada Y, Tanaka Y, Tomonaga M, Yamamoto N (2000) Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood 95(12):3915–3921.

    PubMed  CAS  Google Scholar 

  • Morimura T, Ohashi K, Kon Y, Hattori M, Sugimoto C, Onuma M (1996) Apoptosis and CD8-down-regulation in the thymus of chickens infected with Marek’s disease virus. Arch Virol 141(11):2243–2249.

    PubMed  CAS  Google Scholar 

  • Morimura T, Ohashi K, Kon Y, Hattori M, Sugimoto C, Onuma M (1997) Apoptosis in peripheral CD4+ T cells and thymocytes by Marek’s disease virus-infection. Leukemia 11(Suppl 3):206–208.

    PubMed  Google Scholar 

  • Morimura T, Ohashi K, Sugimoto C, Onuma M (1998) Pathogenesis of Marek’s disease (MD) and possible mechanisms of immunity induced by MD vaccine. J Vet Med Sci 60(1):1–8.

    PubMed  CAS  Google Scholar 

  • Morimura T, Cho KO, Kudo Y, Hiramoto Y, Ohashi K, Hattori M, Sugimoto C, Onuma M (1999) Anti-viral and anti-tumor effects induced by an attenuated Marek’s disease virus in CD4- or CD8-deficient chickens [In Process Citation]. Arch Virol 144(9):1809–1818.

    PubMed  CAS  Google Scholar 

  • Murthy KK, Calnek BW (1979) Marek’s disease tumor-associated surface antigen (MATSA) in resistant versus susceptible chickens. Avian Dis 23(4):831–837.

    PubMed  CAS  Google Scholar 

  • Naiki M, Fujii Y, Ikuta K, Higashi H, Kato S (1982) Expression of Hanganutziu and Deicher type heterophile antigen on the cell surface of Marek’s disease lymphoma. Adv Exp Med Biol 152:445–456.

    PubMed  CAS  Google Scholar 

  • Nathanson S, Lucidarme N, Landman-Parker J, Deschenes G (2002) Long-term survival of renal graft complicated with Burkitt lymphoma. Pediatr Nephrol 17(12):1066–1068.

    PubMed  Google Scholar 

  • Nazerian K, Sharma JM (1975) Detection of T-cell surface antigens in a Marek’s disease lymphoblastoid cell line. J Natl Cancer Inst 54(1):277–279.

    PubMed  CAS  Google Scholar 

  • Nazerian K, Witter RL (1984) Immunization against Marek’s disease transplantable cell lines. Avian Dis 28(1) :160–167.

    PubMed  CAS  Google Scholar 

  • Niikura M, Witter RL, Jang HK, Ono M, Mikami T, Silva RF (1999) MDV glycoprotein D is expressed in the feather follicle epithelium of infected chickens. Acta Virol 43 (2–3):159–163.

    PubMed  CAS  Google Scholar 

  • Ohashi K, Mikami T, Higashihara T, Kodama H, Izawa H (1986) Monoclonal antibody to chicken fetal antigen on Marek’s disease lymphoblastoid cell line MDCC-MSB1. Cancer Res 46(11):5858–5863.

    PubMed  CAS  Google Scholar 

  • Ohashi K, Mikami T, Kodama H, Izawa H (1987) Suppression of NK activity of spleen cells by chicken fetal antigen present on Marek’s disease lymphoblastoid cell line cells. Int J Cancer 40(3):378–382.

    PubMed  CAS  Google Scholar 

  • Ohashi K, Morimura T, Takagi M, Lee SI, Cho KO, Takahashi H, Maeda Y, Sugimoto C, Onuma M (1999) Expression of bcl-2 and bcl-x genes in lymphocytes and tumor cell lines derived from MDV-infected chickens. Acta Virol 43(2–3):128–132.

    PubMed  CAS  Google Scholar 

  • Omar AR, Schat KA (1996) Syngeneic Marek’s disease virus (MDV)-specific cell-mediated immune responses against immediate early, late, and unique MDV proteins. Virology 222(1):87–99.

    PubMed  CAS  Google Scholar 

  • Omar AR, Schat KA (1997) Characterization of Marek’s disease herpesvirus-specific cytotoxic T lymphocytes in chickens inoculated with a non-oncogenic vaccine strain of MDV. Immunology 90(4):579–585.

    PubMed  CAS  Google Scholar 

  • Omar AR, Schat KA, Lee LF, Hunt HD (1998) Cytotoxic T lymphocyte response in chickens immunized with a recombinant fowlpox virus expressing Marek’s disease herpesvirus glycoprotein B. Vet Immunol Immunopathol 62(1):73–82.

    PubMed  CAS  Google Scholar 

  • Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM (2003) Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 278(20):18671–18681.

    PubMed  CAS  Google Scholar 

  • Parcells MS, Anderson AS, Morgan TW (1995) Retention of oncogenicity by a Marek’s disease virus mutant lacking six unique short region genes. J Virol 69(12):7888–7898.

    PubMed  CAS  Google Scholar 

  • Parcells MS, Dienglewicz RL, Anderson AS, Morgan RW (1999) Recombinant Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a marker gene within the context of the MDV genome. J Virol 73(2):1362–1373.

    PubMed  CAS  Google Scholar 

  • Parcells MS, Lin SF, Dienglewicz RL, Majerciak V, Robinson DR, Chen HC, Wu Z, Dubyak GR, Brunovskis P, Hunt HD, Lee LF, Kung HJ (2001) Marek’s disease virus (MDV) encodes an interleukin-8 homolog (vil-8): characterization of the vil-8 protein and a vil-8 deletion mutant MDV. J Virol 75(11):5159–5173.

    PubMed  CAS  Google Scholar 

  • Payne LN (1985) Pathology. In Payne LN (ed) Marek’s disease: scientific basis and methods of control Vol. xiii. Martinus Nijhoff Publishing, Boston, pp 43–67.

    Google Scholar 

  • Payne LN, Frazier JA, Powell PC (1976) Pathogenesis of Marek’s disease. Int Rev Exp Pathol 16:59–154.

    PubMed  CAS  Google Scholar 

  • Peng F, Bradley G, Tanaka A, Lancz G, Nonoyama M (1992) Isolation and characterization of cDNAs from bamhi-H gene family rnas associated with the tumorigenicity of Marek’s disease virus. J Virol 66(12):7389–7396.

    PubMed  CAS  Google Scholar 

  • Peng Q, Shirazi Y (1996a) Characterization of the protein product encoded by a splicing variant of the Marek’s disease virus Eco-Q gene (Meq). Virology 226(1):77–82.

    PubMed  CAS  Google Scholar 

  • Peng Q, Shirazi Y (1996b) Isolation and characterization of Marek’s disease virus (MDV) cDNAs from a MDV-transformed lymphoblastoid cell line: identification of an open reading frame antisense to the MDV Eco-Q protein (Meq). Virology 221(2):368–374.

    PubMed  CAS  Google Scholar 

  • Peng Q, Zeng M, Bhuiyan ZA, Ubukata E, Tanaka A, Nonoyama M, Shirazi Y (1995) Isolation and characterization of Marek’s disease virus (MDV) cDNAs mapping to the bamhi-I2, bamhi-Q2, and bamhi-L fragments of the MDV genome from lymphoblastoid cells transformed and persistently infected with MDV. Virology 213(2):590–599.

    PubMed  CAS  Google Scholar 

  • Pessah M, Marais J, Prunier C, Ferrand N, Lallemand F, Mauviel A, Atfi A (2002) C-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity. J Biol Chem 277(32):29094–29100.

    PubMed  CAS  Google Scholar 

  • Pevzner IY, Kujdych I, Nordskog AW (1981a) Immune response and disease resistance in chickens. II. Marek’s disease and immune response to GAT. Poult Sci 60(5):927–932.

    PubMed  CAS  Google Scholar 

  • Pevzner IY, Stone HA, Nordskog AW (1981b) Immune response and disease resistance in chickens. I. Selection for high and low titer to Salmonella pullorum antigen. Poult Sci 60(5):920–926.

    PubMed  CAS  Google Scholar 

  • Pharr GT, Vallejo RL, Bacon LD (1997) Identification of Rfp-Y (Mhc-like) haplotypes in chickens of Cornell lines N and P. J Hered 88(6):504–512.

    PubMed  CAS  Google Scholar 

  • Powell PC (1975) Immunity to Marek’s disease induced by glutaraldehyde-treated cells of Marek’s disease lymphoblastoid cell lines. Nature 257(5528):684–685.

    PubMed  CAS  Google Scholar 

  • Qian Z, Brunovskis P, Rauscher 3rd., F, Lee L, Kung HJ (1995) Transactivation activity of Meq, a Marek’s disease herpesvirus bzip protein persistently expressed in latently infected transformed T cells. J Virol 69(7):4037–4044.

    PubMed  CAS  Google Scholar 

  • Qian Z, Brunovskis P, Lee L, Vogt PK, Kung HJ (1996) Novel DNA binding specificities of a putative herpesvirus bzip oncoprotein. J Virol 70(10):7161–7170.

    PubMed  CAS  Google Scholar 

  • Quere P (1992) Suppression mediated in vitro by Marek’s disease virus-transformed T- lymphoblastoid cell lines: effect on lymphoproliferation. Vet Immunol Immunopathol 32(1–2):149–164.

    PubMed  CAS  Google Scholar 

  • Quere P, Dambrine G (1988) Development of anti-tumoral cell-mediated cytotoxicity during the course of Marek’s disease in chickens. Ann Rech Vet 19(3):193–201.

    PubMed  CAS  Google Scholar 

  • Qureshi MA, Trembicki KA, Dietert RR, Bacon LD (1986) Chicken developmental antigens in 15I5-B-congenic lines. J Hered 77(6):435–440.

    PubMed  CAS  Google Scholar 

  • Reddy SM, Lupiani B, Gimeno IM, Silva RF, Lee LF, Witter RL (2002) Rescue of a pathogenic Marek’s disease virus with overlapping cosmid DNAs: use of a pp38 mutant to validate the technology for the study of gene function. Proc Natl Acad Sci USA 99(10):7054–7059.

    PubMed  CAS  Google Scholar 

  • Rispens BH, Vloten HV, Mastenbroek N, Maas HJ, Schat KA (1972a) Control of Marek’s disease in the Netherlands. I. Isolation of an avirulent Marek’s disease virus (strain CVI 988) and its use in laboratory vaccination trials. Avian Dis 16(1):11–19.

    Google Scholar 

  • Rispens BH, Vloten HV, Mastenbroek N, Maas JL, Schat KA (1972b) Control of Marek’s disease in the Netherlands. II. Field trials on vaccination with an avirulent strain (CVI 988) of Marek’s disease virus. Avian Dis 16(1):139–152.

    Google Scholar 

  • Ross N, O’Sullivan G, Rothwell C, Smith G, Burgess SC, Rennie M, Lee LF, Davison TF (1997) Marek’s disease virus EcoRI-Q gene (meq) and a small RNA antisense to ICP4 are abundantly expressed in CD4+ cells and cells carrying a noval lymphoid marker, AV37, in Marek’s disease lymphomas. J Gen Virol. 78:2191–2198.

    PubMed  CAS  Google Scholar 

  • Rosenberger JK, Cloud SS, Olmeda-Miro N (1997, July 21) Epizootiology and adult transmission of Marek’s disease. Paper presented at the Avian Tumor Virus Symposium. NV, Reno.

    Google Scholar 

  • Rziha HJ, Bauer B (1982) Circular forms of viral DNA in Marek’s disease virus-transformed lymphoblastoid cells. Arch Virol 72(3):211–216.

    PubMed  CAS  Google Scholar 

  • Schat KA, Calnek BW (1978) Characterization of an apparently nononcogenic Marek’s disease virus. J Natl Cancer Inst 60(5):1141–1146.

    Google Scholar 

  • Schat KA, Xing Z (2000) Specific and nonspecific immune responses to Marek’s disease virus. Dev Comp Immunol 24(2–3):201–221.

    PubMed  CAS  Google Scholar 

  • Schat KA, Calnek BW, Fabricant J (1982) Characterization of two highly oncogenic strains of Marek’s disease virus. Avian Pathol 11:593–605.

    PubMed  CAS  Google Scholar 

  • Schat KA, Chen CL, Calnek BW, Char D (1991) Transformation of T-lymphocyte subsets by Marek’s disease herpesvirus. J Virol 65(3):1408–1413.

    PubMed  CAS  Google Scholar 

  • Schauenstein K, Kromer G, Hala K, Bock G, Wick G (1988) Chicken-activated-T- lymphocyte-antigen (CATLA) recognized by monoclonal antibody INN-CH 16 represents the IL- 2 receptor. Dev Comp Immunol 12(4):823–831.

    PubMed  CAS  Google Scholar 

  • Schumacher D, Tischer BK, Fuchs W, Osterrieder N (2000) Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J Virol 74(23):11088–11098.

    PubMed  CAS  Google Scholar 

  • Shamblin, CE, Greene N, Arumugaswami V, Dienglewicz RL, Parcells MS (2004) Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: association of meq mutations with MDVs of high virulence. Vet Microbiol 102:147–167.

    PubMed  CAS  Google Scholar 

  • Sharma JM (1977) Role of tumor antigen in vaccine protection in Marek’s disease. J Biol Stand 5(4):333–339.

    Google Scholar 

  • Sharma JM (1988) Presence of natural suppressor cells in the chicken embryo spleen and the effect of virus infection of the embryo on suppressor cell activity. Vet Immunol Immunopathol 19(1):51–66.

    PubMed  CAS  Google Scholar 

  • Sharma JM, Witter RL, Coulson BD (1978) Development of cell-mediated immunity to Marek’s disease tumor cells in chickens inoculated with Marek’s disease vaccines. J Natl Cancer Inst 61(5):1273–1280.

    PubMed  CAS  Google Scholar 

  • Shek WR, Calnek BW, Schat KA, Chen CH (1983) Characterization of Marek’s disease virus-infected lymphocytes: discrimination between cytolytically and latently infected cells. J Natl Cancer Inst 70(3):485–491.

    PubMed  CAS  Google Scholar 

  • Skonier JE, Bowen MA, Aruffo A, Bajorath J (1997) CD6 recognizes the neural adhesion molecule BEN. Protein Sci 6(8):1768–1770.

    PubMed  CAS  Google Scholar 

  • Smyth GP, Stapleton PP, Barden CB, Mestre JR, Freeman TA, Duff MD, Maddali S, Yan Z, Daly JM (2003) Renal cell carcinoma induces prostaglandin E2 and T-helper type 2 cytokine production in peripheral blood mononuclear cells. Ann Surg Oncol 10(4):455–462.

    PubMed  Google Scholar 

  • Soloski MJ (2001) Recognition of tumor cells by the innate immune system. Curr Opin Immunol 13(2):154–162.

    PubMed  CAS  Google Scholar 

  • Takagi M, Ishikawa K, Nagai H, Sasaki T, Gotoh K, Koyama H (1996) Detection of contamination of vaccines with the reticuloendotheliosis virus by reverse transcriptase polymerase chain reaction (RT-PCR). Virus Res 40(2):113–121.

    PubMed  CAS  Google Scholar 

  • Theis GA (1981) Subpopulations of suppressor cells in chickens infected with cells of a transplantable lymphoblastic leukemia. Infect Immun 34(2):526–534.

    PubMed  CAS  Google Scholar 

  • Theis GA, McBride RA, Schierman LW (1975) Depression of in vitro responsiveness to phytohemagglutinin in spleen cells cultured from chickens with Marek’s disease. J Immunol 115(3):848–853.

    PubMed  CAS  Google Scholar 

  • Thomas JL, Pourquie O, Coltey M, Vaigot P, Le Douarin NM (1993) Identification in the chicken of GRL1 and GRL2: two granule proteins expressed on the surface of activated leukocytes. Exp Cell Res 204(1):156–166.

    PubMed  CAS  Google Scholar 

  • Thomas JL, Stieber A, Gonatas N (1994) Two proteins associated with secretory granule membranes identified in chicken regulated secretory cells. J Cell Sci 107(Pt 5):1297–1308.

    PubMed  CAS  Google Scholar 

  • Trapp S, Parcells MS, Kamil JP, Schumacher D, Tischer BK, Kumar PM, Nair VK, Osterrieder N (2006) A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med 203:1307–1317.

    PubMed  CAS  Google Scholar 

  • Tremblay F, Fernandes M, Habbab F, de BEMD, Loertscher R, Meterissian S (2002) Malignancy after renal transplantation: incidence and role of type of immunosuppression. Ann Surg Oncol 9(8):785–788.

    PubMed  Google Scholar 

  • Tulman ER, Afonso CL, Lu Z, Zsak L, Rock DL, Kutish GF (2000) The genome of a very virulent Marek’s disease virus. J Virol 74(17):7980–7988.

    PubMed  CAS  Google Scholar 

  • Ui M, Endoh D, Cho KO, Kon Y, Iwata A, Maki Y, Sato F, Kuwabara M (1998) Transcriptional analysis of Marek’s disease virus (MDV) genes in MDV- transformed lymphoblastoid cell lines without MDV-activated cells. J Vet Med Sci 60(7):823–829.

    PubMed  CAS  Google Scholar 

  • Uni Z, Pratt WD, Miller MM, O’Connell PH, Schat KA (1994) Syngeneic lysis of reticuloendotheliosis virus-transformed cell lines transfected with Marek’s disease virus genes by virus-specific cytotoxic T cells. J Virol 68(12):8239–8253.

    Google Scholar 

  • Vallejo RL, Pharr GT, Liu HC, Cheng HH, Witter RL, Bacon LD (1997) Non- association between Rfp-Y major histocompatibility complex-like genes and susceptibility to Marek’s disease virus-induced tumours in 6(3) × 7(2) F2 intercross chickens. Anim Genet 28(5):331–337.

    PubMed  CAS  Google Scholar 

  • Vallejo RL, Bacon LD, Liu HC, Witter RL, Groenen MA, Hillel J, Cheng HH (1998) Genetic mapping of quantitative trait loci affecting susceptibility to Marek’s disease virus induced tumors in F2 intercross chickens. Genetics 148(1):349–360.

    PubMed  CAS  Google Scholar 

  • Volpini LM, Calnek BW, Sekellick MJ, Marcus PI (1995) Stages of Marek’s disease virus latency defined by variable sensitivity to interferon modulation of viral antigen expression. Vet Microbiol 47(1–2):99–109.

    PubMed  CAS  Google Scholar 

  • Volpini LM, Calnek BW, Sneath B, Sekellick MJ, Marcus PI (1996) Interferon modulation of Marek’s disease virus genome expression in chicken cell lines. Avian Dis 40(1):78–87.

    PubMed  CAS  Google Scholar 

  • von Bulow V, Rudolph R, Fuchs B (1986) [Enhanced pathenogicity of chicken anemia agent (CAA) in dual infections with Marek’s disease virus (MDV), infectious bursal disease virus (IBDV) or reticuloendotheliosis virus (REV)]. Zentralbl Veterinarmed [B] 33(2):93–116.

    Google Scholar 

  • Wakenell PS, Miller MM, Goto RM, Gauderman WJ, Briles WE (1996) Association between the Rfp-Y haplotype and the incidence of Marek’s disease in chickens. Immunogenetics 44(4):242–245.

    PubMed  CAS  Google Scholar 

  • Walter J, Schirrmacher V, Mosier D (1995) Induction of CD44 expression by the Epstein-Barr virus latent membrane protein LMP1 is associated with lymphoma dissemination. Int J Cancer 61(3):363–369.

    PubMed  CAS  Google Scholar 

  • Watt SM, Buhring HJ, Rappold I, Chan JY, Lee-Prudhoe J, Jones T, Zannettino AC, Simmons PJ, Doyonnas R, Sheer D, Butler LH (1998) CD164, a novel sialomucin on CD34(+) and erythroid subsets, is located on human chromosome 6q21. Blood 92(3):849–866.

    PubMed  CAS  Google Scholar 

  • Weng N, Levine BL, June CH, Hodes RJ (1997) Regulation of telomerase RNA template expression in human T lymphocyte development and activation. J Immunol 158(7): 3215–3220.

    PubMed  CAS  Google Scholar 

  • Witter RL (1983) Characteristics of Marek’s disease viruses isolated from vaccinated commercial chicken flocks: association of viral pathotype with lymphoma frequency. Avian Dis 27(1):113–132.

    PubMed  CAS  Google Scholar 

  • Witter RL (1997) Increased virulence of Marek’s disease virus field isolates. Avian Dis 41(1):149–163.

    PubMed  CAS  Google Scholar 

  • Witter RL, Nazerian K, Purchase HG, Burgoyne GH (1970) Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus. Biken J 13(1):53–57.

    Google Scholar 

  • Witter RL, Stephens EA, Sharma JM, Nazerian K (1975) Demonstration of a tumor- associated surface antigen in Marek’s disease. J Immunol 115(1):177–183.

    PubMed  CAS  Google Scholar 

  • Witter RL, Sharma JM, Offenbecker L (1976) Turkey herpesvirus infection in chickens: induction of lymphoproliferative lesions and characterization of vaccinal immunity against Marek’s disease. Avian Dis 20(4):676–692.

    PubMed  CAS  Google Scholar 

  • Witter RL, Lee LF, Bacon LD, Smith EJ (1979) Depression of vaccinal immunity to Marek’s disease by infection with reticuloendotheliosis virus. Infect Immun 26(1):90–98.

    PubMed  CAS  Google Scholar 

  • Witter RL, Li D, Jones D, Lee LF, Kung HJ (1997) Retroviral insertional mutagenesis of a herpesvirus: a Marek’s disease virus mutant attenuated for oncogenicity but not for immunosuppression or in vivo replication. Avian Dis 41(2):407–421.

    PubMed  CAS  Google Scholar 

  • Witter RL, Gimeno IM, Reed WM, Bacon LD (1999) An acute form of transient paralysis induced by highly virulent strains of Marek’s disease virus. Avian Dis 43(4):704–720.

    PubMed  CAS  Google Scholar 

  • Xing Z, Schat KA (2000a) Expression of cytokine genes in Marek’s disease virus-infected chickens and chicken embryo fibroblast cultures. Immunology 100(1):70–76.

    PubMed  CAS  Google Scholar 

  • Xing Z, Schat KA (2000b) Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus. J Virol 74(8):3605–3612.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Okada I, Matsuda H, Okabayashi H, Mizutani M (1991) Genetic resistance to a Marek’s disease transplantable tumor cell line in chicken lines selected for different immunological characters. Poult Sci 70(7):1455–1461.

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Hattori M, Ohashi K, Sugimoto C, Onuma M (1995) Kinetic analysis of T cells and antibody production in chickens infected with Marek’s disease virus. J Vet Med Sci 57(5):945–946.

    PubMed  CAS  Google Scholar 

  • Yonash N, Bacon LD, Witter RL, Cheng HH (1999) High resolution mapping and identification of new quantitative trait loci (QTL) affecting susceptibility to Marek’s disease. Anim Genet 30(2):126–135.

    PubMed  CAS  Google Scholar 

  • Zannettino AC, Buhring HJ, Niutta S, Watt SM, Benton MA, Simmons PJ (1998) The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood 92(8):2613–2628.

    PubMed  CAS  Google Scholar 

  • Zelnik V, Majerciak V, Szabova D, Geerligs H, Kopacek J, Ross LJ, Pastorek J (1999) Glycoprotein gd of MDV lacks functions typical for alpha-herpesvirus gd homologues. Acta Virol 43(2–3):164–168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Parcells, M.S., Burgess, S.C. (2008). Immunological aspects of Marek’s disease virus (MDV)-induced lymphoma progression. In: Kaiser, H.E., Nasir, A. (eds) Selected Aspects of Cancer Progression: Metastasis, Apoptosis and Immune Response. Cancer Growth and Progression, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6729-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6729-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6728-0

  • Online ISBN: 978-1-4020-6729-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics