Advertisement

Metastasis: a current perspective

  • David T. Denhardt
  • Ann F. Chambers
  • Danny R. Welch
Part of the Cancer Growth and Progression book series (CAGP, volume 11)

Abstract

Topics included in this brief review of the metastatic process include recent (2004) progress in our understanding of tumor cell-host cell interactions and issues concerning the establishment of metastases. This includes the critical steps of intravasation and extravasation as well as establishment and evolution of micrometastases. Also summarized are details of metastasis-suppressing and metastasis-including genes and how they impact on signal transduction pathways. Finally, two proteins that play complex roles in the metastatic process, osteopontin and issue inhibitor of metastasis-1, are discussed in more depth.

Keywords

tumor-host interactions metastasis-suppressing genes metastasis-inducing genes osteopontin TIMP-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan AL, Tuck AB, Bramwell VHC, Vandenberg TA, Winquist EW, Chambers AF (2004) Contribution of osteopontin to the development of bone metastasis. In: Singh G, Rabbani SA (eds) Bone cancer metastasis. Humana, Totowa, NJ.Google Scholar
  2. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727.PubMedCrossRefGoogle Scholar
  3. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54.PubMedCrossRefGoogle Scholar
  4. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536.PubMedCrossRefGoogle Scholar
  5. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283.PubMedGoogle Scholar
  6. Chambers AF, Wilson SM, Kerkvliet N, O’Malley FP, Harris JF, Casson AG (1996) Osteopontin expression in lung cancer. Lung Cancer 15:311–323.PubMedCrossRefGoogle Scholar
  7. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572.PubMedCrossRefGoogle Scholar
  8. Chang PL, Cao M, Hicks P (2003) Osteopontin induction is required for tumor promoter-induced transformation of preneoplastic mouse cells. Carcinogenesis 24:1749–1758.PubMedCrossRefGoogle Scholar
  9. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J (1999) Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res 59:1196–1201.PubMedGoogle Scholar
  10. Corsini C, Mancuso P, Paul S, Burlini A, Martinelli G, Pruneri G, Bertolini F (2003) Stroma cells: a novel target of herceptin activity. Clin Cancer Res 9:1820–1825.PubMedGoogle Scholar
  11. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392.PubMedCrossRefGoogle Scholar
  12. Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, Rittling SR (2003) Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 20:77–84.PubMedCrossRefGoogle Scholar
  13. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447.PubMedCrossRefGoogle Scholar
  14. Dong-Le Bourhis X, Berthois Y, Millot G, Degeorges A, Sylvi M, Martin PM, Calvo F (1997) Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int J Cancer 71:42–48.PubMedCrossRefGoogle Scholar
  15. El-Tanani M, Barraclough R, Wilkinson MC, Rudland PS (2001a) Regulatory region of metastasis-inducing DNA is the binding site for T cell factor-4. Oncogene 20:1793–1797.PubMedCrossRefGoogle Scholar
  16. El-Tanani M, Barraclough R, Wilkinson MC, Rudland PS (2001b) Metastasis-inducing DNA regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Res 61:5619–5629.PubMedGoogle Scholar
  17. Engers R, Gabbert HE (2000) Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol 126:682–692.PubMedCrossRefGoogle Scholar
  18. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29 (Suppl 16):15–18.PubMedGoogle Scholar
  19. Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF (2001) The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1:621–632.PubMedCrossRefGoogle Scholar
  20. Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195:346–355.PubMedCrossRefGoogle Scholar
  21. Gillespie MT, Thomas RJ, Zhou PU, Martin TJ, Findlay DM (1997) Calcitonin receptors, bone sialoprotein and osteopontin are expressed in primary breast cancers. Int J Cancer 10:812–815.CrossRefGoogle Scholar
  22. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.PubMedCrossRefGoogle Scholar
  23. Hayakawa T (1994) Tissue inhibitors of metalloproteinases and their cell growth-promoting activity. Cell Struct Funct 19:109–114.PubMedCrossRefGoogle Scholar
  24. Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, Shimanuki Y, Nishio K, Fukuchi Y (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117.PubMedCrossRefGoogle Scholar
  25. Hojilla CV, Mohammed FF, Khokha R (2003) Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89:1817–1821.PubMedCrossRefGoogle Scholar
  26. Holten-Andersen MN, Christensen IJ, Nielsen HJ, Stephens RW, Jensen V, Nielsen OH, Sorensen S, Overgaard J, Lilja H, Harris A, Murphy G, Brunner N (2002) Total levels of tissue inhibitor of metalloproteinases 1 in plasma yield high diagnostic sensitivity and specificity in patients with colon cancer. Clin Cancer Res 8:156–164.PubMedGoogle Scholar
  27. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323.PubMedCrossRefGoogle Scholar
  28. Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36.PubMedGoogle Scholar
  29. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549.PubMedCrossRefGoogle Scholar
  30. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T (1999) CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59:219–226.PubMedGoogle Scholar
  31. Kheradmand F, Werb Z (2002) Shedding light on sheddases: role in growth and development. Bioessays 24:8–12.PubMedCrossRefGoogle Scholar
  32. Leali D, Dell’Era P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, Nico B, Ribatti D, Presta M (2003) Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol 171:1085–1093.PubMedGoogle Scholar
  33. LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. (2002) Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer 100:2–8.PubMedCrossRefGoogle Scholar
  34. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893.PubMedCrossRefGoogle Scholar
  35. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84:44–48.PubMedCrossRefGoogle Scholar
  36. Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR (2004) The BRMS1 metastasis suppressor forms complexes with RBP1 and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569.PubMedCrossRefGoogle Scholar
  37. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566.PubMedGoogle Scholar
  38. Moss ML, White JM, Lambert MH, Andrews RC (2001) TACE and other ADAM proteases as targets for drug discovery. Drug Discov Today 6:417–426.PubMedCrossRefGoogle Scholar
  39. Nagase H, Woessner F (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494.PubMedCrossRefGoogle Scholar
  40. Nakopoulou L, Giannopoulou I, Stefanaki K, Panayotopoulou E, Tsirmpa I, Alexandrou P, Mavrommatis J, Katsarou S, Davaris P (2002) Enhanced mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in breast carcinomas is correlated with adverse prognosis. J Pathol 197:307–313.PubMedCrossRefGoogle Scholar
  41. Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K, Nifuji A, Denhardt DT, Noda M (2001) Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res 16:652–659.PubMedCrossRefGoogle Scholar
  42. Nii M, Kayada Y, Yoshiga K, Takada K, Okamoto T, Yanagihara K (2000) Suppression of metastasis by tissue inhibitor of metalloproteinase-1 in a newly established human oral squamous cell carcinoma cell line. Int J Oncol 16:119–124.PubMedGoogle Scholar
  43. Normanno N, Bianco C, De Luca A, Salomon DS (2001) The role of EGF-related peptides in tumor growth. Front Biosci 6:D685–707.PubMedCrossRefGoogle Scholar
  44. Oates AJ, Barraclough R, Rudland PS (1997) The role of osteopontin in tumorigenesis and metastasis. Invasion Metastasis 17:1–15.PubMedGoogle Scholar
  45. Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4:487–494.PubMedCrossRefGoogle Scholar
  46. Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62:6966–6972.PubMedGoogle Scholar
  47. Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, Sheu JC, Chen CL, Hsu HC (2003) Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98:119–127.PubMedCrossRefGoogle Scholar
  48. Pardoll D (2001) T cells and tumours. Nature 411:1010–1012.PubMedCrossRefGoogle Scholar
  49. Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS (2003) Immune responses to human tumors: development of tumor vaccines. Anticancer Res 23:1969–1996.PubMedGoogle Scholar
  50. Porter JF, Shen S, Denhardt DT (2004) Tissue inhibitor of metalloproteinase-I stimulates proliferation of human cancer cells by inhibiting a metalloproteinase. Brit J Cancer 90:463–70.PubMedCrossRefGoogle Scholar
  51. Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105:17–19.PubMedCrossRefGoogle Scholar
  52. Ree AH, Florenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad O (1997) High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3:1623–1628.PubMedGoogle Scholar
  53. Sharp JA, Sung V, Slavin J, Thompson EW, Henderson MA (1999) Tumor cells are the source of osteopontin and bone sialoprotein expression in human breast cancer. Lab Invest 79:869–877.PubMedGoogle Scholar
  54. Shevde LA, Welch DR (2003) Metastasis suppressor pathways–an evolving paradigm. Cancer Lett 198:1–20.PubMedCrossRefGoogle Scholar
  55. Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3:55–63.PubMedCrossRefGoogle Scholar
  56. Shijubo N, Uede T, Kon S, Nagata M, Abe S (2000) Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog 11:135–146.PubMedGoogle Scholar
  57. Sung V, Gilles C, Murray A, Clarke R, Aaron RD, Azumi N, Thompson EW (1998) The LCC15-MB human breast cancer cell line expresses osteopontin and exhibits invasive and metastatic phenotype. Exp Cell Res 241:273–284.PubMedCrossRefGoogle Scholar
  58. Svensson S, Nilsson K, Ringberg A, Landberg G (2003) Invade or proliferate? Two contrasting events in malignant behavior governed by p16(INK4a) and an intact Rb pathway illustrated by a model system of basal cell carcinoma. Cancer Res 63:1737–1742.PubMedGoogle Scholar
  59. Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4:565–573.PubMedCrossRefGoogle Scholar
  60. Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5:2271–2277.PubMedGoogle Scholar
  61. Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292.PubMedGoogle Scholar
  62. Tuck AB, Elliott BE, Hota C, Tremblay E, Chambers AF (2000) Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem 78:465–475.PubMedCrossRefGoogle Scholar
  63. Tuck AB, Hota C, Chambers AF (2001) Osteopontin(OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Res Treat 70:197–204.PubMedCrossRefGoogle Scholar
  64. Tuck AB, Hota C, Wilson SM, Chambers AF (2003) Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 22: 198–1205.CrossRefGoogle Scholar
  65. Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79:502–508.PubMedCrossRefGoogle Scholar
  66. van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19:301–311.PubMedCrossRefGoogle Scholar
  67. Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42.PubMedCrossRefGoogle Scholar
  68. Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29.PubMedCrossRefGoogle Scholar
  69. Wall SJ, Jiang Y, Muschel RJ, DeClerck YA (2003) Meeting report: Proteases, extracellular matrix, and cancer: an AACR Special Conference in Cancer Research. Cancer Res 63:4750–4755.PubMedGoogle Scholar
  70. Wang CS, Tetu B (2002) Stromelysin-3 expression by mammary tumor-associated fibroblasts under in vitro breast cancer cell induction. Int J Cancer 99:792–799.PubMedCrossRefGoogle Scholar
  71. Wang T, Yamashita K, Iwata K, Hayakawa T (2002) Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem Biophys Res Commun 296:201–205.PubMedCrossRefGoogle Scholar
  72. Welch DR, Steeg PS, Rinker-Schaeffer CW (2000) Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2:408–416.PubMedCrossRefGoogle Scholar
  73. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049.PubMedCrossRefGoogle Scholar
  74. Weber GF (2001) The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 1552:61–85.PubMedGoogle Scholar
  75. Westermarck J, Kahari V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792.PubMedGoogle Scholar
  76. Wong CW, Song C, Grimes MM, Fu W, Dewhirst MW, Muschel RJ, Al-Mehdi AB (2002) Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol 161:749–753.PubMedGoogle Scholar
  77. Yamashita K, Suzuki M, Iwata H, Koike T, Hamaguchi M, Shinagawa A, Noguchi T, Hayakawa T (1996) Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). FEBS Letts 396:103–107.CrossRefGoogle Scholar
  78. Yan L, Moses MA (2001) A case of tumor betrayal: biphasic effects of TIMP-1 on Burkitt’s lymphoma.Am J Pathol 158:1185–1190.PubMedGoogle Scholar
  79. Yeatman TJ, Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metastasis 20:85–90.PubMedCrossRefGoogle Scholar
  80. Ylisirnio S, Hoyhtya M, Makitaro R, Paaakko P, Risteli J, Kinnula VL, Turpeenniemi-Hujanen T, Jukkola A (2001) Elevated serum levels of type I collagen degradation marker ICTP and tissue inhibitor of metalloproteinase (TIMP) 1 are associated with poor prognosis in lung cancer. Clin Cancer Res 7:1633–1637.PubMedGoogle Scholar
  81. Yoshiji H, Harris SR, Raso E, Gomez DE, Lindsay CK, Shibuya M, Sinha CC, Thorgeirsson UP (1998) Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int J Cancer 75:81–87.PubMedCrossRefGoogle Scholar
  82. Yoshikawa T, Saitoh M, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, Yanoma S, Noguchi Y (1999) Tissue inhibitor of matrix metalloproteinase-1 in the plasma of patients with gastric carcinoma. A possible marker for serosal invasion and metastasis. Cancer 86:1929–1935.PubMedCrossRefGoogle Scholar
  83. Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG (1995) Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1:899–906.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • David T. Denhardt
    • 1
  • Ann F. Chambers
    • 2
  • Danny R. Welch
    • 3
  1. 1.Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUSA
  2. 2.London Regional Cancer CentreLondonCanada
  3. 3.Department of Pathology and Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations