Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 788 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Roy et al., “Ultrawideband radio design: The promise of high-speed, short-range wireless connectivity, Proceedings of IEEE, pp. 295–311, Feb. 2004.

    Google Scholar 

  2. B. Razavi et al., “A UWB CMOS transceiver,” IEEE Journal of Solid-State Circuits, Vol. 40, no. 12, pp. 2555–2562, Dec. 2005.

    Article  Google Scholar 

  3. X. Li, S. Shekhar, D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 40, no. 12, pp. 2609–2619, Dec. 2005.

    Article  Google Scholar 

  4. A. Shameli, P. Heydari, “A Novel Ultra-Low Power (ULP) Low Noise Amplifier using differential inductor feedback” IEEE European Solid-State Circuits Conf., Sept. 2006.

    Google Scholar 

  5. A. Shekhar, X. Li, D. J. Allstot, “A CMOS 3.1-10.6GHz UWB LNA employing staggered compensated series peaking,” IEEE RFIC Symposium, pp. 63–66 June 2006.

    Google Scholar 

  6. A. Bevilacqua, A. M. Niknejad, “An Ultra-Wideband LNA for 3.1 to 10.6GHz Wireless Receivers,” IEEE Int. Solid-State Circuits Conference, pp. 382–383 Feb. 2004.

    Google Scholar 

  7. A. Ismail, A. Abidi, “A 3 to 10GHz LNA Using Wideband LC-ladder Matching Network,” IEEE Int. Solid-State Circuits Conference, pp. 384–385, Feb. 2004.

    Google Scholar 

  8. J. B. Beyer et al., “MESFET Distributed Amplifier Design Guidelines,”IEEE Trans. Microwave Theory and Techniques, pp. 268–275, March 1984.

    Google Scholar 

  9. B. Kleveland et al., “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,” IEEE Journal of Solid-State Circuits, Vol. 36 no. 10, pp 1480–1488, Oct. 2001.

    Article  Google Scholar 

  10. B. M. Ballweber, R. Gupta, D. J. Allstot, “A Fully Integrated 0.5-5.5-GHz CMOS Distributed Amplifier,” IEEE Journal of Solid-State Circuits, Vol. 35, no. 2, pp. 231–239, Feb. 2000.

    Article  Google Scholar 

  11. H.-T. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed amplifier,” IEEE Journal of Solid-State Circuits, Vol. 37, pp. 985–993, Aug. 2002.

    Article  Google Scholar 

  12. H. Shigematsu et al., “40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems,” IEEE Int. Solid-State Circuits Conference, pp. 476–477 Feb. 2004.

    Google Scholar 

  13. E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, J. D. Noe, “Distributed Amplification,” Proc. IRE, pp. 956–969, Aug. 1948.

    Google Scholar 

  14. A. Q. Safarian, A. Yazdi, P. Heydari, “Design and Analysis of an Ultra Wide-band Distributed CMOS Mixer,” IEEE Trans. on VLSI Systems, Vol. 13, no. 5, pp. 618–629, May 2005.

    Article  Google Scholar 

  15. H. Wu, A. Hajimiri, “Silicon-Based Distributed Voltage-Controlled Oscillator,”IEEE J. Solid-State Circuits, Vol. 36, pp. 493–502, March 2001.

    Article  Google Scholar 

  16. T. H. Lee, The design of CMOS radio-frequency integrated circuits, Cambridge University Press, 2nd ed., 2004.

    Google Scholar 

  17. P. Heydari, D. Lin, “A Performance Optimized CMOS Distributed LNA for UWB Receivers,” IEEE Custom Integr. Circ. Conf., Sept. 2005, pp. 337–340.

    Google Scholar 

  18. Q. He, M. Feng, “Low-power, High-Gain, and High-Linearity SiGe BiCMOS Wide-Band Low-Noise Amplifier,” IEEE JSSC, Vol. 39, no. 6, pp. 956–959, June 2004.

    Google Scholar 

  19. C. S. Aitchison, “The Intrinsic Noise Figure of the MESFET Distributed Amplifier,” IEEE Trans. Microw. Theory Tech., Vol.e MTT-33, no. 6, pp. 460–466, June 1985.

    Article  Google Scholar 

  20. A. Papoulis, S. Pillai, Probability, random variables and stochastic processes, Fourth Edition, McGraw-Hill, 2002.

    Google Scholar 

  21. J.-S. Goo, H.-T. Ahn, D. J. Ladwig, Z. Yu, T. H. Lee, R. W. Dutton, “A Noise Optimization Technique for Integrated Low-Noise Amplifiers,?”IEEE Journal of Solid-State Circuits, Vol. 37, no. 8, pp. 994–1002, Aug. 2002.

    Article  Google Scholar 

  22. Y. Tsividis, Operation and modeling of the MOS transistor, pp. 440–512, McGraw-Hill, 1999.

    Google Scholar 

  23. R. C. Becker, J. B. Beyer, “On Gain-Bandwidth Product for Distributed Amplifiers,”IEEE Trans. Microwave Theory and Techniques, Vol. MTT-34, no. 6, pp. 736–738, June 1986.

    Article  Google Scholar 

  24. F. Zhang, P. R. Kinget, “Low-Power Programmable Gain CMOS Distributed LNA,” IEEE J. Solid-State Circuits, Vol. 41, no. 6, pp. 1333–1343, June 2006.

    Article  Google Scholar 

  25. R. Liu et al., “A 0.5-14GHz 10.6dB CMOS Cascode Distributed Amplifier,” IEEE Symposium on VLSI Circuits, pp. 139–140, June 2003.

    Google Scholar 

  26. S. Lida et al., “A 3.1 to 5.1 GHz CMOS DSSS UWB Transceiver for WPANs,” IEEE Int. Solid-State Circuits Conf., pp. 214–215, Feb. 2005.

    Google Scholar 

  27. Y. Park, C.-H. Lee, J.D. Cressler, J. Laskar, A. Joseph, “A very low power SiGe LNA for UWB application,” IEEE MTT-S, pp. 1041-1044 June 2005.

    Google Scholar 

  28. X. Guan, C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory and Techniques, Vol. 54, no. 8, pp. 3278–3283, Aug. 2006.

    Article  Google Scholar 

  29. C.-T. Fu, C.-N. Kuo, “3-11-GHz UWB LNA using dual feedback for broadband matching,” IEEE RFIC Symposium, pp. 67–70, June 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Safarian, A., Heydari, P. (2008). UWB Distributed Low Noise Amplifiers (DLNA). In: Safarian, A., Heydari, P. (eds) Silicon-Based RF Front-Ends for Ultra Wideband Radios. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6722-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6722-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6721-1

  • Online ISBN: 978-1-4020-6722-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics