Mitochondrial Medicine

  • Anna Gvozdjáková

Mitochondrial medicine represents a complex of clinical, biochemical, pathological and genetic information crucial in diagnosis and treatment. An outline of the development of mitochondrial medicine was for the first time published by Luft in 1994 [22]. Several organizations are focused on mitochondrial medicine, from experimental and clinical research (Mitochondrial Research Society – MRS) to patients application (Mitochondrial Medicine Society –MMS), education and family oriented (United Mitochondrial Diseases Foundation – UMDF), and others. Knowledge concerning mitochondrial DNA (mtDNA) changes in several mitochondrial diseases were published recently [10].

This book presents mitochondrial medicine from the viewpoint of several preclinical studies on chronobiology, aging, Alzheimer’s disease, Huntington’s disease, diabetes, supplementary therapy with CoQ10, carnitine, alpha-lipoic acid, n-3, n-6 PUFA, and it provides information on clinical application of mitochondrial medicine in cardiology, diabetology, nephrology, immunology, and andrology.


Aging mitochondrial disease oxidative stress mitochondrial medicine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliev G, Smith MA, Torre JC, Perry G (2004) Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease. Mitochondrion 4:649–663PubMedCrossRefGoogle Scholar
  2. 2.
    Andreson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Derouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefGoogle Scholar
  3. 3.
    Beal MF (2005) Mitochondria take center stage in ageing and neurodegeneration. Ann Neurol 58(4):495–505PubMedCrossRefGoogle Scholar
  4. 4.
    Bota DA, Davies KJA (2001) Protein degradation in mitochondria: implications for oxidative stress, ageing and diseases: a novel etiological classification of mitochondrial proteolytic disorders (review). Mitochondrion 1:33–49PubMedCrossRefGoogle Scholar
  5. 5.
    Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29(3):531–546PubMedCrossRefGoogle Scholar
  6. 6.
    Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163PubMedCrossRefGoogle Scholar
  7. 7.
    Cooper JM, Schapira AH (2003) Friedrich’s ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy. Biofactors 18:163–171PubMedCrossRefGoogle Scholar
  8. 8.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  9. 9.
    DiMauro S., DiMauro PM (1973) Muscle carnitine palmitoyl-trransferase deficiency and myoglobinuria. Science 182:929–931PubMedCrossRefGoogle Scholar
  10. 10.
    DiMauro, Hirano M., Schon EA (2006). Mitochondrial Medicine. Informa Healthcare 2006, pp 348Google Scholar
  11. 11.
    Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179:899–902PubMedCrossRefGoogle Scholar
  12. 12.
    Epstein CJ (1995) Down’s syndrome (trisomy 21). In: Scriver CR, Beaudet AL, Sly WS et al. (eds) The Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill, New YorkGoogle Scholar
  13. 13.
    Fraser PE, Yang DS, Yu G, Lovesque L, Nishimura M, Arawaka S, Serpell LC, Rogaeva E, Hyslop PG (2000) Presenilin structure, function and role in Alzheimer’s disease. Biochim Biophys Acta 1502:1–15PubMedGoogle Scholar
  14. 14.
    Gardian G, Vecsei L (2004) Huntington’s disease: pathomechanism and therapeutic perspectives. J Neural Transm 111:1485–1494PubMedCrossRefGoogle Scholar
  15. 15.
    Haas RH, Nasirian F, Nakano K et al. (1989) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722CrossRefGoogle Scholar
  16. 16.
    Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T (1991) Age-associated accumulation of 8-hydroxydeoxyquanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179(2):1023–1029PubMedCrossRefGoogle Scholar
  17. 17.
    Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugyiama S, Ozawa T (1996) Aged-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226(2):369–377PubMedCrossRefGoogle Scholar
  18. 18.
    Jope R, Blass JP (1975) A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver. Biochem J 150:397–403PubMedGoogle Scholar
  19. 19.
    Kašparová S, Sumbalová Z, Bystricky P, Kucharská J, Liptaj T, Mlynárik V, Gvozdjáková A (2006) Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington’s disease. Neurochem Int 48:93–99PubMedCrossRefGoogle Scholar
  20. 20.
    Kim SH, Fountoulakis M, Dierssen M, Lubec G (2001) Decreased protein levels of complex I 30-kDa subunit in fetal Down’s syndrome brains. J Neural Transm Suppl 61:109–116Google Scholar
  21. 21.
    Kunz WS, Kuznetsov AV, Clark JF, Tracey I, Elger CE (1999) Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J Neurochem 72:1580–1585PubMedCrossRefGoogle Scholar
  22. 22.
    Luft R (1994) The development of mitochondrial medicine. Proc Natl Acad Sci USA 91:9831–9838CrossRefGoogle Scholar
  23. 23.
    Luft R, Landau BR (1995) Mitochondrial medicine. J Intern Med 238:405–421PubMedCrossRefGoogle Scholar
  24. 24.
    Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962) A case of severe hypermetabolism of nonthyroid origin with the defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study. J Clin Invest 41:1776–1804PubMedCrossRefGoogle Scholar
  25. 25.
    Miquel J, Fleming JE (1984) A two-step hypothesis on the mechanism of in vitro cell ageing: cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp Gerontol 19:31–36PubMedCrossRefGoogle Scholar
  26. 26.
    Muchová J, Šustrová M, Garaiová I, Liptáková A, Blažíček P, Kvasnička P, Pueschel S, Duračková Z (2001) Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down’s syndrome patients. Free Radic Biol Med 31(4):499–508PubMedCrossRefGoogle Scholar
  27. 27.
    Muller-Hocker J (1989) Cytochrome – c –oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol 134(5):1167–1173PubMedGoogle Scholar
  28. 28.
    Naviaux RK (2004) Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 4:351–361PubMedCrossRefGoogle Scholar
  29. 29.
    Pereira C, Gazila MM, Oliviera CR (2001) β-amyloid protein impairs mitochondrial function. In: Ebadi M, Nearwah J, Chopra RK (eds) Mitochondrial Ubiquinone, Vol. 2. pp 281–300Google Scholar
  30. 30.
    Reddy PH (2006) Mitochondrial oxidative damage in ageing and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics (review article). J Biomed Biotechnol 31372:1–13CrossRefGoogle Scholar
  31. 31.
    Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Research. Brain Res Rev 49(3):618–632PubMedCrossRefGoogle Scholar
  32. 32.
    Reed JC (2002) Apoptosis-based therapies. Nat Rev/Drug Discov 1:111–121CrossRefGoogle Scholar
  33. 33.
    Remacle J, Lambert D, Raes M, Pigeolet E, Michiels C, Toussaint D (1992) Importance of various antioxidant enzymes for cell stability. Biochem J 286:41–46PubMedGoogle Scholar
  34. 34.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766PubMedGoogle Scholar
  35. 35.
    Shults CW (2004) Mitochondrial dysfunction and possible treatments in Parkinson’s disease– a review. Mitochondrion 4:641–648PubMedCrossRefGoogle Scholar
  36. 36.
    Shults CW, Oakes D, Kieburtz K et al. (2002) Effects of coenzyme Q10 in early Parkinson’s disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550PubMedCrossRefGoogle Scholar
  37. 37.
    Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2002) Oxidative stress in Alzheimer’s disease. (Review). Biochim Biophys Acta 1502:139–144Google Scholar
  38. 38.
    Spiro AJ, Moore CL, Prineas JW, Strasberg PM, Rapin I (1970) A cytochrome-related inherited disorder of the nervous system and muscle. Arch Neurol 23:103–112PubMedGoogle Scholar
  39. 39.
    Van Gurp M, Festjens N, Van Loo G, Saelens S, Vandenabeele P (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304:487–497PubMedCrossRefGoogle Scholar
  40. 40.
    Vielhalber S, Kaufmann J, Kanowski M et al. (2001) Effect of creatine supplementation on metabolite levels in ALS motor cortices. Exp Neurol 172:377–382CrossRefGoogle Scholar
  41. 41.
    Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10(Suppl):S58–S62PubMedCrossRefGoogle Scholar
  42. 42.
    Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nicoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 24:21427–21430Google Scholar
  43. 43.
    Zhang C, Linnane AW, Nagley P (1993) Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195(2):1104–1110PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Anna Gvozdjáková

    There are no affiliations available

    Personalised recommendations