Skip to main content

Pull, Push and Evaporate: The Role of Surfaces in Plant Water Transport

  • Chapter
Functional Surfaces in Biology

Abstract

Water is of fundamental significance for plant life. One fundamental aspect is that water represents an important environmental factor. Rain, fog and mist affect irradiation absorbed by a plant and the environmental temperature. Water is therefore a climate-related parameter. It also acts as a factor which influences the immediate surroundings of a plant. For example, plants which live in swamp or flooded habitats are especially adapted to these conditions by possessing aerating tissues (aerenchyma) in order to maintain aerobic conditions around the roots. Fog or mist can impede gaseous exchange by covering the stomatal pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto, T., Hari, P., and Vesala, T. (2002) Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions. Silvia Fennica 36: 615–623.

    Google Scholar 

  • Adamson, A.W., and Gast, A.P. (1997) Physical chemistry of surfaces, John Wiley & Sons, New York.

    Google Scholar 

  • Baas, P., and Schweingruber, F.H. (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bulletin 8: 245–274.

    Google Scholar 

  • Bargel, H., Koch, K., Cerman, Z. and Neinhuis, C. (2006) Functional Plant Biology 33: 893–910.

    Article  CAS  Google Scholar 

  • Barthlott, W., and Capesius, I. (1975) Mikromorphologische und funktionelle Untersuchungen am Velamen radicum der Orchideen. Berichte der Deutschen Botanischen Gesellschaft 88: 379–390.

    Google Scholar 

  • Barthlott, W., and Neinhuis, C. (1997) The purity of sacred lotus or escape from contamination in biological surfaces. Planta 202: 1–8.

    Article  CAS  Google Scholar 

  • Benzing, D. (1976) The absorptive capacities of bromeliad trichomes. American Journal of Botany 63: 1009–1014.

    Article  Google Scholar 

  • Benzing, D. (1990) Vascular epiphytes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Benzing, D.H., and Pridgeon, A. (1983) Foliar trichomes of Pleurothallidinae (Orchidaceae): functional significance. American Journal of Botany 70: 173–180.

    Article  Google Scholar 

  • Benzing, D.H., Friedman, W.E., Peterson, G., and Renfrow, A. (1983) Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. American Journal of Botany 70: 121–133.

    Article  Google Scholar 

  • Brennen, C.E. (1995) Cavitation and bubble formation, Oxford University Press, New York.

    Google Scholar 

  • Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., and Sternberg DA S.L.,L. (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant, Cell and Environment 26: 1633–1645.

    Google Scholar 

  • Butterfield, B.G., and Meylan, B.A. (1980) Three-dimensional structure of wood. An ultrastructural approach. 2nd edn., Chapman and Hall, London.

    Google Scholar 

  • Carlquist, S. (2001) Comparative wood anatomy, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Choat, B., Ball, M., Luly, J., and Holtum, J. (2003) Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest species. Plant Physiology 131: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Choat, B., Jansen, S., Zwieniecki, M.A., Smets, E., and Holbrook, N.M. (2004) Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. Journal of Experimental Botany 55: 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, I.R. (1977) Stomatal behaviour and the environment. Advances in Botanical Research 4: 117–227.

    Article  Google Scholar 

  • Crombie, D.S., Hipkins, M.F., and Milburn, J.A. (1985) Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Australian Journal of Plant Physiology 12: 445–453.

    Article  CAS  Google Scholar 

  • DeSanto, A.V., Alfani, A., and DeLuca, P. (1976) Water vapour uptake from the atmosphere by some Tillandsia species. Annals of Botany 40: 391–394.

    Google Scholar 

  • Dixon, H.H., and Joly, J. (1895) On the ascent of sap. Philosophical Transactions of the Royal Society of London 186: 563–576.

    Article  Google Scholar 

  • Feild, T.S., Zwieniecki, M.A., Donoghue, M.J., and Holbrook, N.M. (1998) Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. PNAS 95: 14256–14259.

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt, G.F.J. (1914) Physiological plant anatomy, McMillan Co., London

    Google Scholar 

  • Hacke, U.G., and Sperry, J.S. (2003) Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant, Cell and Environment 26: 303–311.

    Article  Google Scholar 

  • Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., and McCulloh, K.A. (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.

    Article  Google Scholar 

  • Heady, R.D., Cunningham, R.B., Donnelly, C.F., and Evans, P.D. (1994) Morphology of warts in the tracheids of cypress pine (Callitris Vent.). IAWA Journal 15: 265–281.

    Google Scholar 

  • Holbrook, N.M., and Zwieniecki, M.A. (1999) Embolism repair and xylem tension. Do we need a miracle? Plant Physiology 120: 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Hölttä, T., Vesala, T., Perämäki, M., and Nikinmaa, E. (2002) Relationships between embolism, stem water tension and diameter changes. Journal of Theoretical Biology 215: 23–38.

    Article  PubMed  Google Scholar 

  • Jansen, S., Baas, P., Gasson, P., and Smets, E. (2003) Vestured pits: Do they promote safer water transport? International Journal of Plant Science 164: 405–413.

    Article  Google Scholar 

  • Jansen, S., Smets, E., and Baas, P. (1998) Vestures in woody plants: a review. IAWA Journal 19: 347–382.

    Google Scholar 

  • Jarbeau, J.A., Ewers, F.W., and Davis, S.D. (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant, Cell and Environment 18: 189–196.

    Article  Google Scholar 

  • Kerstiens, G. (1996) Cuticular water permeability and its physiological significance. Journal of Experimental Botany 47: 1813–1832.

    Article  CAS  Google Scholar 

  • Kohonen, M. M. (2006) Engineered wettability in tree capillaries. Langmuir 22: 3148–3153.

    Article  PubMed  CAS  Google Scholar 

  • Konrad, W., and Roth-Nebelsick, A. (2003) The dynamics of gas bubbles in conduits of vascular plants and implications for embolism repair. Journal of Theoretical Biology 224: 43–61.

    Article  PubMed  CAS  Google Scholar 

  • Konrad, W., and Roth-Nebelsick, A. (2005) The significance of pit shape for hydraulic isolation of embolized conduits of vascular plants during novel refilling. Journal of Biological Physics 31: 57–71.

    Article  Google Scholar 

  • Lösch, R. (2003) Wasserhaushalt der Pflanzen, Quelle & Meyer, Wiebelsheim.

    Google Scholar 

  • Magnani, F., and Borghetti, M. (1995) Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance. Plant, Cell and Environment 18: 689–696.

    Article  Google Scholar 

  • Maris, H., and Baribal, S. (2000) Negative pressures and cavitation in liquid helium Physics Today 53: 29–34.

    Article  CAS  Google Scholar 

  • Martin, C.E., and Schmitt, A.K. (1989) Unusual water relations in the CAM atmospheric epiphyte Tillandsia usneoides L. (Bromeliaceae). Botanical Gazette 150: 1–8.

    Article  Google Scholar 

  • Mez, C. (1904) Physiologische Bromeliaceen-Studien I. Die Wasser-Ökonomie der extrem atmosphärischen Tillandsien. Jahrbuch der Wissenschaftlichen Botanik 40: 157–229.

    Google Scholar 

  • Nair, M.N.B., and Mohan Ram, H.Y. (1989) Vestured pits and vestured vessel member walls in some Indian dicotyledonous woods. Botanical Journal of the Linnean Society 100: 323–336.

    Article  Google Scholar 

  • Nobel, P.S. (2005) Physicochemical and Environmental Plant Physiology, 3rd edn., Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Oertli, J.J. (1971) The stability of water under tension in the xylem. Zeitschrift für Pflanzenphysiologie 65: 195–209

    Google Scholar 

  • Pesacreta, T.C., Groom, L.H., and Rials, T.G. (2005) Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiaceae). IAWA Journal 26(4): 397–426.

    Google Scholar 

  • Pickard, W.F. (1981) The ascent of sap in plants. Progress in Biophysical and Molecular Biology 37: 181–229.

    Article  Google Scholar 

  • Pierce, S., Maxwell, K., Griffiths, H., and Winter, K. (2001) Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. American Journal of Botany 88: 1371–1389.

    Article  Google Scholar 

  • Porembski, S., and Barthlott, W. (1988) Velamen radicum micromorphology and classification of Orchidaceae. Nordic Journal of Botany 8: 117–137.

    Article  Google Scholar 

  • Pridgeon, A.M., Stern, W.L., and Benzing, D.H. (1983) Tilosomes in roots of Orchidaceae: morphology and systematic occurrence. American Journal of Botany 70: 1365–1377.

    Article  Google Scholar 

  • Raven, J.A., and Edwards,D. (2004) Physiological evolution of lower embryophytes: adaptations to the terrestrial environment. In: The Evolution of Plant Physiology, ed. by Hemsley, A.R., and Poole, I. Amsterdam: Elsevier Academic Press, pp. 17–41.

    Chapter  Google Scholar 

  • Roth-Nebelsick, A., and Speck, T. (2000) Mechanical and hydrodynamic properties of vessels with tertiary helical thickenings: new information about possible functional relationships. In. Plant Biomechanics 2000, ed. by Spatz, H.-C., and Speck, T. Stuttgart: Thieme, pp. 265–271.

    Google Scholar 

  • Salleo, S., Lo Gullo, M.A., Trifilo, P., and Nardini, A. (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem-refilling of cavitated stems of Laurus nobilis L. Plant, Cell and Environment 27: 1065–1076.

    Article  Google Scholar 

  • Sperry, J.S. (2003) Evolution of water transport and xylem structure. International Journal of Plant Science 164: S115–S127.

    Article  Google Scholar 

  • Sperry, J.S., Holbrook, N.M., Zimmermann, M.H., and Tyree, M.T. (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiology 83: 414–417.

    Article  PubMed  Google Scholar 

  • Stiller, V., Sperry, J.S., and Lafitte, R. (2005) Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure. American Journal of Botany 92: 1970–1974.

    Article  Google Scholar 

  • Tyree, M.T., and Sperry, J.S. (1989) Vulnerability of xylem to cavitation and embolisms. Annual Review of Plant Physiology 40: 19–38.

    Article  Google Scholar 

  • Tyree, M.T., and Zimmermann, M.H. (2002) Xylem structure and the ascent of sap, Springer: Berlin, Heidelberg, New York.

    Google Scholar 

  • Tyree, M.T., Salleo, S., Nardini, A., Lo Gullo, M.A., and Mosca, R. (1999) Refilling of embolized vessels in young stems of Laurel: Do we need a new paradigm? Plant Physiology 120: 11–21.

    Article  CAS  Google Scholar 

  • van Ieperen, W., Nijsse, J., Keijzer, C.J., and van Meeteren, U. (2001) Induction of air embolism in xylem conduits of pre-defined diameter. Journal of Experimental Botany 358: 981–991.

    Article  Google Scholar 

  • Vesala, T., Hölttä, T., Perämäki, M., and Nikinmaa, E. (2003) Refilling of a hydraulically isolated xylem vessel: model calculations. Annals of Botany 91: 419–428.

    Article  PubMed  Google Scholar 

  • Vogt, U.K. (2001) Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of Sorbus aucuparia L. and Sambucus nigra L. Journal of Experimental Botany 52: 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P., Fürstner, R., Barthlott, W. and Neinhuis, C. (2003) Journal of Experimental Botany 54: 1295–1303.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, J.K., Sperry, J.S., Hacke, U.G., and Hoang, N. (2005) Intervessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment 28: 800–812.

    Article  Google Scholar 

  • Yang, S., and Tyree, M.T. (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant, Cell and Environment 15: 633–643.

    Article  Google Scholar 

  • Zotz, G., and Hietz, P. (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 2067–2078.

    Article  PubMed  CAS  Google Scholar 

  • Zweypfennig, R.C.V.J. (1978) A hypothesis on the function of vestured pits. IAWA Bulletin 1: 13–15.

    Google Scholar 

  • Zwieniecki, M.A., and Holbrook, N.M. (2000) Bordered pit structure and vessel wall surface properties. Implications for embolism repair. Plant Physiology 123: 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  • Zwieniecki, M.A., Melcher, P.J., and Holbrook, N.M. (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291: 1059–1062.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Roth-Nebelsick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Roth-Nebelsick, A. (2009). Pull, Push and Evaporate: The Role of Surfaces in Plant Water Transport. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6697-9_9

Download citation

Publish with us

Policies and ethics