Skip to main content

Water Repellent Properties of Spiders: Topographical Variations and Functional Correlates

  • Chapter

Abstract

Biological surfaces, depending upon their physical structure and chemical composition, can fall anywhere on a spectrum of wettability that runs from strongly water repellent to forming strong adhesive bonds with water. When the surfaces in question are those at the interface between the organism and its environment, these wettability characteristics have profound consequences for function. For example, in semi-aquatic plants, water repellent surfaces near the stomata are important for preserving the ability to exchange gasses with air (Schönherr and Ziegler 1975), and the wettable ventral surfaces of gyrinid beetles provide the intimate contact with water that is necessary for their style of aquatic locomotion (Fish and Nicastro 2003; Fish 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, N.M. (1976) A comparative study of locomotion on the water surface in semiaquatic bugs (Insects, Hemiptera, Gerromorpha). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 139: 337–396.

    Google Scholar 

  • Andersen, N.M. (1977) Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs (Insecta, Hemiptera, Gerromorpha) in relation to life on the water surface. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 140: 7–37.

    Google Scholar 

  • Barthlott, W. and Neinhuis, C. (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 2002:1–8.

    Article  Google Scholar 

  • Braun, F. (1931) Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zool. Jb. Syst 62: 175.

    Google Scholar 

  • Bush, J.W.M. and Hu, D.L. (2006) Walking on water: biolocomotion at the interface. Annual Review of Fluid Mechanics 38: 339–369.

    Article  Google Scholar 

  • Cheng, L. (1973) Marine and freshwater skaters: differences in surface fine structures. Nature 242: 132–133.

    Article  Google Scholar 

  • Clerck, C. (1757) Svenska spindlar, uti sina hufvud-slågter indelte samt under några och sextio särskildte arter beskrefne och med illuminerade figurer uplyste. Stockholmiae. 154pp.

    Google Scholar 

  • Crisp, D.J. and Thorpe, W.H. (1948) The water-protecting properties of insect hairs. Discussions of the Faraday Society 3: 210–220.

    Article  Google Scholar 

  • Crome, W. (1953) Die Respirations- und Circulationsorgane der Argyroneta aquatica Cl. (Araneae). Wiss. Z. Humboldt Univ. Berlin 2, Math.-naturwiss. Reihe 3–4 (1953) 53.

    Google Scholar 

  • Danielson-François, A. (2006) Natural history of Glenognatha emertoni (Araneae, Tetragnathidae): mating behavior and sperm release in a haplogyne spider. Journal of Arachnology 34:387–398.

    Article  Google Scholar 

  • Decleer, K. (2003) Population dynamics of marshland spiders and carabid beetles due to flooding: about drowning, air bubbling, floating, climbing and recolonization. International Conference ‘Towards natural flood reductions strategies’ Warsaw 6–13 Sept. 2003. 1–6.

    Google Scholar 

  • De Geer, C. (1778) Mémoires pour servir á l’histoire des insectes. Stockholm, 7(3-4):176–32.

    Google Scholar 

  • Ehlers, M. (1939) Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool. Hb. Syst. 72: 1–373.

    Google Scholar 

  • Fish, F.E. (1999) Performance constraints on the maneuverability of flexible and rigid biological systems. pp. 394–406. In: Proceedings of the Eleventh International Symposium on Unmanned Untethered Submersible Technology. Autotomous Undersea Systems Institute, Durham, N.H.

    Google Scholar 

  • Fish, F.E. and Nicastro, A.J. (2003) Aquatic turning performance by the whirligig beetle: constraints on maneuverability by a rigid biological system. Journal of Experimental Biology 206: 1649–1656.

    Article  PubMed  Google Scholar 

  • Foelix, R.F. (1996) Biology of Spiders (2nd ed.). Oxford University Press, Oxford. 330pp.

    Google Scholar 

  • Gao, X. and Jiang, L. (2004) Water-repellent legs of water striders. Nature 432: 36.

    Article  PubMed  CAS  Google Scholar 

  • Hebets, E.A. and Chapman., R.F. (2000) Surviving the flood: plastron respiration in the non-tracheate arthropod Phrynus marginemaculatus (Amblypygi: Arachnida). Journal of Insect Physiology 46: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Hentz, N.M. (1845) Descriptions and figures of the araneides of the United States. Boston Journal of Natural History 5:189–202.

    Google Scholar 

  • Hix, R.L., Johnson, D.T. and Bernhardt, J.L. (2003) Antennal sensory structures of Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) with notes on aquatic adaptations. The Coleopterists Bulletin. 57: 85–94.

    Article  Google Scholar 

  • Hu, D., Chan, B. and Bush, J.W.M. (2003) The hydrodynamics of water strider locomotion. Nature 424: 663–666.

    Article  PubMed  CAS  Google Scholar 

  • Levi, H.W. (1967) Adaptations of respiratory systems in spiders. Evolution 21: 571–573.

    Article  Google Scholar 

  • Maddison, W.P., and Hedin, M. (2003) Phylogeny of Habronattus jumping spiders (Araneae, Salticidae) with consideration of genital and courtship evolution. Systematic Entomology 28: 1–21.

    Article  Google Scholar 

  • Marshall, S.D. (1992) The importance of being hairy. Natural History 9/92: 41–47.

    Google Scholar 

  • McHale, G., Shirtcliffe, N.J. and Newton, M.I. (2004) Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20: 10146–10149.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, R.W. and Cummings, K.W. (1984) An introduction to the aquatic insects of North America, 2nd edition. Kendall Hunt Publishing. Dubuque, Iowa. 722pp.

    Google Scholar 

  • Neinhuis, C. and Barthlott, W. (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79: 667–677.

    Article  Google Scholar 

  • Pain, S. (2005) Who dares spins: the inside of a carnivorous plant is as close as a spider gets to a free lunch, as long as it can get back out. New Scientist 188: 2531–2532.

    Google Scholar 

  • Rovner, J.S. (1986) Spider hairiness: air stores and low activity enhance flooding survival in inland terrestrial species. Actas X Congr. Int. Arachnol. Jaca/Espana I: 123–129.

    Google Scholar 

  • Schmitz, A. (2004) Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). Journal Comparative Physiology B. 174: 519–526.

    CAS  Google Scholar 

  • Schmitz, A. (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). Journal of Experimental Biology 208: 1401–1411.

    Article  PubMed  Google Scholar 

  • Schmitz, A. and Perry, S. F. (2001) Bimodal breathing in jumping spiders: morphometric partitioning of lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). Journal of Experimental Biology 204: 4321–4334.

    PubMed  CAS  Google Scholar 

  • Schmitz, A. and Perry, S. F. (2002) Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lububris (L.)(Arachnida, Araneae, Lycosidae). Arthropod Structure and Development. 31: 217–230.

    Article  PubMed  Google Scholar 

  • Schönherr, J. and Ziegler, H. (1975) Hydrophobic cuticular ledges prevent water entering the air pores of liverwort thalli. Planta 124: 51–60.

    Article  Google Scholar 

  • Stratton, G., Suter, R.B. and Miller, P.R. (2004) Evolution of water surface locomotion by spiders: a comparative approach. Biological Journal of the Linnean Society 81: 63–58.

    Google Scholar 

  • Stratton, G.E. (2005) Evolution of ornamentation and courtship behavior in Schizocosa: insights from a phylogeny based on morphology (Araneae, Lycosidae). Journal of Arachnology 33: 347–376.

    Article  Google Scholar 

  • Suter R.B., Rosenberg, O., Loeb,S., Wildman, H. and Long J. Jr, (1997) Locomotion on the water surface: propulsive mechanisms of the fisher spider, Dolomedes triton. Journal of Experimental Biology 200: 2523–2538.

    PubMed  Google Scholar 

  • Suter, R.B. and Wildman, H. (1999) Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. Journal of Experimental Biology 202: 2771–2785.

    PubMed  Google Scholar 

  • Suter, R.B., Stratton, G.E. and Miller, P.R. (2003) Water surface locomotion by spiders: distinct gaits in diverse families. Journal of Arachnology 31: 428–432.

    Article  Google Scholar 

  • Suter, R.B., Stratton, G.E. and Miller, P.R. (2004.) Taxonomic variation among spiders in the ability to repel water; surface adhesion and hair density. Journal of Arachnology 32: 11–21.

    Article  Google Scholar 

  • Thorpe, W.H and Crisp, D.J. (1947) Studies on plastron respiration 1. The biology of Aphelocheirus (Hemiptera, Aphelocheiridae, Naucoridae) and the mechanism of plastron retention. Journal of Experimental Biology 24: 227–303.

    PubMed  CAS  Google Scholar 

  • Thorpe, W.H. (1950) Plastron respiration in aquatic insects. Biological Review 25: 344–390.

    Google Scholar 

  • Ubick, D., Paquin, P., Cushing, P.E. and Roth, V. eds. (2006) Spiders of North America, an Identification Manual. American Arachnological Society. 377pp.

    Google Scholar 

  • Walckenaer, C.A. (1837) Histoire naturelle des insectes. Aptères. Paris, 1:1–682.

    Google Scholar 

  • Walckenaer, C.A. (1842) Histoire naturelle des Insectes. Aptères. Paris, 2:1–549.

    Google Scholar 

  • Wichard, W., Arens, W. and Eisenbeis, G. (2002) Biological Atlas of Aquatic Insects. Apollo Books. Stenstrup, Denmark. 339pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail E. Stratton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stratton, G.E., Suter, R.B. (2009). Water Repellent Properties of Spiders: Topographical Variations and Functional Correlates. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6697-9_6

Download citation

Publish with us

Policies and ethics