Water Repellence in Gecko Skin: How Do Geckos Keep Clean?


Leaving the water in mesozoic times, the reptiles developed an integument, which enabled them to survive the transition from water to air. The reptilian skin is covered by a pronounced keratinized uppermost layer, which protects the body from both extensive transcutaneous water loss and mechanical damage. However, this solution evolved in the dry environment, led to additional problems, discussed below, to be solved applying the laws of physics. In the present chapter, we will consider geckos, which are an excellent example for structurally caused hydrophobic surfaces. The latter serve as an excellent example for the epidermal morphological interaction between the skin and the physical forces of the environment.


Contact Angle Free Surface Energy Water Repellence Cohesion Force Climbing Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, N.K. (1963) Principles of water repellency. In Waterproofing and Water Repellency (ed. J. L. Moilliet), pp. 1–23. Amsterdam: Elsevier.Google Scholar
  2. Autumn, K., Liang, Y.A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, Th. W., Fearing, R. and Full, R. J. (2000) Adhesive force of a single gecko foot-hair. Nature 405, 681–685.PubMedCrossRefGoogle Scholar
  3. Barthlott, W., and Neinhuis, C. (1997) Purity of the sacred lotus or escape from contamination in biological surfaces. Planta 202: 1–8.CrossRefGoogle Scholar
  4. Cassie, A.B.D., and Baxter S. (1944) Wettability of porous surfaces. Trans Farad Soc 40, 546–551.CrossRefGoogle Scholar
  5. Gorb, S.N., Kesel, A. and Berger, J. (2000) Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Athropod Structure & Development 29, 129–135.CrossRefGoogle Scholar
  6. Hansen, W. R., and Autumn, K. (2005) Evidence for self-cleaning in gecko setae. PNAS 102, 385–389.PubMedCrossRefGoogle Scholar
  7. Hiller, U. (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62, 307–362.CrossRefGoogle Scholar
  8. Hiller, U. (1969) Zusammenhang zwischen vorbehandelten Polyäthylen-Folien durch Korona-Entladung und dem Haftvermögen von Tarentola m. mauritanica (Rept.). forma et functio 1, 350–352.Google Scholar
  9. Hiller U. (1972) Licht-und elektronenmikroskopische Untersuchungen zur Haftborstenentwicklung bei Tarentola m. mauritanica L. (Reptilia, Gekkonidae). Z Morphol Tiere 73, 263–278.CrossRefGoogle Scholar
  10. Hiller, U. (1976) Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie der borstenführenden Hautsinnesorgane bei Tarentola mauritanica L. (Reptilia, Gekkonidae). Zoomorph 84, 211–222.CrossRefGoogle Scholar
  11. Hiller, U. (1978) Morphology and electrophysiological properties of cutaneous sensilla in agamid lizards. Pflügers Arch 377, 189–191.CrossRefGoogle Scholar
  12. Wagner, T., Neinhuis, C., Barthlott, W. (1996) Wettability and contaminability of insect wings as a function of their lptures. Acta Zool (Stockh.) 77, 213–225.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of AnatomyUniversity of MuensterMuensterGermany

Personalised recommendations