Skip to main content

Sub-micron Structures Causing Reflection and Antireflection in Animals

  • Chapter
Functional Surfaces in Biology
  • 1961 Accesses

Abstract

The evolution of optical reflectors in animals began soon after the first eye evolved. Trilobites are the first animals known to host image-forming eyes, of around 540 Ma (Fig. 13.1); eyes which contain efficient optics in their own right (Parker, 1998; Parker et al., 2003). In the absence of vision, any incidental iridescence appearing before the Cambrian period would have been neutrally selective. But with the evolution of the eye, the size, shape, colour, and behaviour of animals were revealed for the first time. Consequently adaptive optical devices in nature were born.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chae, J. and Nishida, S. (1994) Integumental ultrastructure and color patterns in the iridescent copepods of the family Sapphirinidae (Copepoda: Poecilostomatoida). Mar. Biol. 119: 205–210.

    Article  Google Scholar 

  • Chae, J. and Nishida, S. (1995) Vertical distribution and diel migration in the iridescent copepods of the family Sapphirinidae: a unique example of reverse migration? Mar. Ecol. Progr. Ser. 119: 111–124.

    Article  Google Scholar 

  • Denton, E.J. (1970) On the organization of reflecting surfaces in some marine animals. Phil. Trans. R. Soc. Lond. B. 258: 285–313.

    Article  Google Scholar 

  • Denton, E.J. (1990) Light and vision at depths greater than 200 metres. In: Light and life in the sea, ed. by P.J. Herring, A.K. Cambell, M. Whitfield and L. Maddock. Cambridge: Cambridge University Press, pp. 127–148.

    Google Scholar 

  • Dyck, J. (1971) Structure and spectral reflectance of green and blue feathers of the rosefaced lovebird (Agapornis roseicollis). Biol. Skr. 18: 1–67.

    Google Scholar 

  • Fox, D.L. (1976) Animal biochromes and structural colours. Berkeley: University of California Press.

    Google Scholar 

  • Fox, H.M. and Vevers, G. (1960) The nature of animal colours. London: Sidgwick and Jackson Ltd.

    Google Scholar 

  • Fung, K.K. (2005) Photonic iridescence of a blue-banded bee. Microsc. Microanal. 11 (suppl. 2): 1202–1203

    Google Scholar 

  • Ghiradella, H. (1989) Structure and development of iridescent butterfly scales: lattices and laminae. J. Morph. 202: 69–88.

    Article  Google Scholar 

  • Herring, P.J. (1994) Reflective systems in aquatic animals. Comp. Biochem. Physiol. 109A: 513–546.

    Article  CAS  Google Scholar 

  • Hutley, M.C. (1982) Diffraction gratings. London: Academic Press.

    Google Scholar 

  • Kawaguti, S. and Kamishima, Y. (1964a) Electron microscopic study on the iridophores of opisthobranchiate molluscs. Biol. J. Okayama Uni. 10: 83–91.

    Google Scholar 

  • Kinoshita, S., Yoshioka, S., Fujii, Y. and Okamoto, N. (2002) Photophysics of structural colour in the Morpho butterflies. Forma 17: 103–121.

    Google Scholar 

  • Land, M.F., (1972) The physics and biology of animal reflectors, Progr. Biophys. Mol. Biol. 24: 75–106.

    Article  CAS  Google Scholar 

  • Land, M.F. (1978) Animal eyes with mirror optics. Sci. Am. 239: 126–134.

    Article  Google Scholar 

  • Mason, C.W. (1926) Structural colours in insects, 1. J. Phys. Chem. 30: 383–395.

    Article  CAS  Google Scholar 

  • Mason, C.W. (1927) Structural colours in insects, II and III. J. Phys. Chem. 31: 321–354, 1856–1872.

    Article  CAS  Google Scholar 

  • McPhedran, R.C., Nicorovici, N.-A.P., McKenzie, D.R., Rouse, G.W., Botten, L.C., Welch, V., Parker, A.R., Wohlgennant, M. and Vardeny, V. (2003) Structural colours through photonic crystals. Physica B 338: 182–185.

    Article  CAS  Google Scholar 

  • Miller, W.H., Moller, A.R. and Bernhard, C.G. (1966) The corneal nipple array. In: The functional organisation of the compound eye, ed. by C.G. Bernhard. Oxford: Pergamon Press pp. 21–33.

    Google Scholar 

  • Nassau, K. (1983) The physics and chemistry of colour. New York: John Wiley and Sons.

    Google Scholar 

  • Neville, A.C. and Caveney, S. (1969) Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol. Rev. 44: 531–562.

    Article  PubMed  CAS  Google Scholar 

  • Parker, A.R. (1995) Discovery of functional iridescence and its coevolution with eyes in the phylogeny of Ostracoda (Crustacea). Proc. R. Soc. Lond. B 262: 349–355.

    Article  Google Scholar 

  • Parker, A.R. (1998) Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian, Proc. R. Soc. Lond. B 265: 967–972.

    Article  Google Scholar 

  • Parker, A.R. (1999a) Light-reflection strategies. Am. Sci. 87: 248–255.

    Google Scholar 

  • Parker, A.R. (1999b) An unusually isolated reflector for host bioluminescence on the second antenna of a lysianassoid (Amphipoda: Gammaridea). In: Crustaceans and the biodiversity crisis (Crustaceana), ed. by F.R. Schram and J.C. von Vaupel Klein. Leiden: Brill, pp. 879–887.

    Google Scholar 

  • Parker, A.R. (2000) 515 Million years of structural colour. J. Opt. A 2: R15–28.

    Google Scholar 

  • Parker, A.R. (2003) In the blink of an eye. London: Simon & Schuster.

    Google Scholar 

  • Parker, A.R. and Hegedus, Z. 2003, Diffractive optics in spiders. J. Opt. A. 5: S111–S116.

    Google Scholar 

  • Parker, A.R., Hegedus, Z. and Watts, R.A. (1998c) Solar-absorber type antireflector on the eye of an Eocene fly (45 Ma). Proc. R. Soc. Lond. B 265: 811–815.

    Google Scholar 

  • Parker, A.R., McKenzie, D.R. and Large, C.J. (1998a) Multilayer reflectors in animals using green and gold beetles as contrasting examples. J. Exp. Biol. 201: 1307–1313.

    Google Scholar 

  • Parker, A.R., McKenzie, D.R. and Ahyong, S.T. (1998b) A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae).Proc. R. Soc. Lond. B 265: 861–867.

    Google Scholar 

  • Parker, A.R., McPhedran, R.C., McKenzie, D.R., Botten, L.C. and Nicorovici, N.-A.P. (2001) Aphrodite’s iridescence. Nature 409: 36–37.

    Article  PubMed  CAS  Google Scholar 

  • Parker, A.R.,Welch, V.L., Driver, D and Martini, N. (2003) An opal analogue discovered in a weevil. Nature 426: 786–787

    Article  PubMed  CAS  Google Scholar 

  • Prum, R.O., Torres, R.H., Williamson, S. and Dyck, J. (1998) Coherent light scattering by blue feather barbs. Nature 396: 28–29.

    Article  CAS  Google Scholar 

  • Prum, R.O., Torres, R.H., Williamson, S. and Dyck, J. (1999) Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc. R. Soc. Lond. B 266: 13–22.

    Article  CAS  Google Scholar 

  • Raman, C.V. (1934) The origin of the colours in the plumage of birds. Proc. Indian Acad. Sci. A 1: 1–7.

    Google Scholar 

  • Sanders, J.V. (1964) Colour of precious opal. Nature 204: 1151.

    Article  Google Scholar 

  • Schultz, T. D. (1986) Role of structural colours in predator avoidance by tiger beetles of the genus Cicindela (Coleoptera: Cicindelidae). Bull. Ent. Soc. Am. 32: 142–146.

    Google Scholar 

  • Shore, B.W., Perry, M.D., Britten, J.A., Boyd, R.D., Feit, M.D., Nguyen, H.T., Chow, R., Loomis, G.E. and Li, L. (1997) Design of high-efficiency dielectric gratings. J. Opt. Soc. Am. A 14: 1124–1136.

    Article  Google Scholar 

  • Verne, J. (1930) Couleurs et pigments des êtres vivants. Paris: Armand Colin.

    Google Scholar 

  • Verrell, P.A. (1991) Illegitimate exploitation of sexual signalling systems and the origin of species. Ethol. Ecol. Evol. 3: 273–283.

    Google Scholar 

  • Vukusic, P., Sambles, J.R. and Lawrence, C.R. (2000) Colour mixing in wing scales of a butterfly. Nature 404: 457.

    Article  PubMed  CAS  Google Scholar 

  • Welch, V.L., Vigneron, J.P. and Parker, A.R. (2005) The cause of colouration in the ctenophore Beroë cucumis. Curr. Biol. 15: R985–986.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T.-H., Gupta, M.C., Robins, B. and Levendusky, T.L. (2003) Color generation in butterfly wings and fabrication of such structures. Opt. Lett. 28: 2342–2344.

    Article  PubMed  Google Scholar 

  • Xi, Y., Gates, B. and Li, Z.-Y. (2001). Adv. Mater. 13: 409–413.

    Article  Google Scholar 

  • Yablonovitch, E. (1999) Liquid versus photonic crystals. Nature 401: 539–541.

    Article  CAS  Google Scholar 

  • Yoshida, A., Motoyama, M., Kosaku, A. and Miyamoto, K. (1996) Nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool. Sci. 13: 525–526.

    Article  Google Scholar 

  • Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Lui, X. and Fu, R. (2003) Colouration strategies in peacock feathers. Proc. Nat. Acad. Sci. 100: 12576–12578.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Parker, A.R. (2009). Sub-micron Structures Causing Reflection and Antireflection in Animals. In: Gorb, S.N. (eds) Functional Surfaces in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6697-9_14

Download citation

Publish with us

Policies and ethics