Skip to main content

Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

  • Chapter
  • First Online:
Protein Hydrolysates in Biotechnology

Abstract

Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Simaiee B (2003) Stimulation by theophylline and sildenafil of rat submandibular secretion of protein, epidermal growth factor and flow rate. Pharmacol Res 48:445–449

    Article  CAS  Google Scholar 

  • Adibi S (2003) Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol Gastrointest Liver Physiol 285:G779–G788

    CAS  Google Scholar 

  • Anderson CMH, Mendoza ME, Kennedy DJ, Raldua D, Thwaites DT (2003) Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via the VPAC1 receptor in a human enterocyte-like cell line (Caco-2). Br J Pharmacol 138:564–573

    Article  CAS  Google Scholar 

  • Ashida K, Katsura T, Motohashi H, Saito H, Inui KI (2001) Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 282:G617–G623

    Google Scholar 

  • Avissar NE, Ziegler TR, Wang HT, Gu LH, Miller JH, Iannoli P, Leibach FH, Ganapathy V, Sax HC (2001) Growth factors regulation of rabbit sodium-dependent neutral AA transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enteretomy. Journal of Parenteral and Enteral Nutrition 25:65–72

    Article  CAS  Google Scholar 

  • Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ (1998) The stomach is a source of leptin. Nature 394:790–793

    Article  CAS  Google Scholar 

  • Barbot L, Windsor E, Rome S, Tricottet V, Reynes M, Topouchian A et al (2003) Intestinal peptide transporter PepT1 is over-expressed during acute cryptosporidiosis in suckling rats as a result of both malnutrition and experimental parasite infection. Parasitol Res 89:364–370

    CAS  Google Scholar 

  • Baro L, Guadix EM, Martinez-Augustin O, Boza JJ, Gil A (1995) Serum AA concentrations in growing rats fed intact protein versus enzymatic protein hydrolysate-based diets. Biol Neonate 68:55–61

    Article  CAS  Google Scholar 

  • Benthem L, Mundinger TO, Taborsky GJ Jr (2000) Meal-induced insulin secretion in dogs is mediated by both branches of the autonomic nervous system. Am J Physiol Endocrinol Metab 278:E603–E610

    CAS  Google Scholar 

  • Berlioz F, Maoret J, Paris H, Laburthe M, Farinotti R (2000) α2-Adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. J Pharmacol Exp Ther 294:466–472

    CAS  Google Scholar 

  • Bishop WP, Wen JT (1994) Regulation of Caco-2 cell proliferation by basolateral membrane epidermal growth factor receptors. Am J Physiol 267:G892–G900

    CAS  Google Scholar 

  • Bjorbaek C, Uotani S, da Silva B, Flier JS (1997) Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272:32686–32695

    Article  CAS  Google Scholar 

  • Bodoky A, Heberer M, Landmann J, Fricker R, Behrens D, Steinhardt J, Harder F (1988) Absorption of protein in the early postoperative period in chronic conscious dogs. Experimentia 44:158–161

    Article  CAS  Google Scholar 

  • Boza JJ, Jiminez J, Martinez O, Suarez MD, Gil A (1994) Nutritional values and antigenicity of two milk protein hydrolysates in rats and guinea pigs. Am Inst Nutr 1978–1986

    Google Scholar 

  • Boza JJ, Martinez O, Baro L, Suarez MD, Gil A (1995a) Influence of casein and casein hydrolysate diets on nutritional recovery of starved rats. Journal of Parenteral and Enteral Nutrition 19:2126–2221

    Article  Google Scholar 

  • Boza JJ, Martinez-Augustin O, Baro L, Suarez MD, Gil A (1995b) Protein versus enzymic protein hydrolysates, Nitrogen utilization in starved rats. Br J Nutr 73:65–71

    Article  CAS  Google Scholar 

  • Boza JJ, Jiminez J, Baro B, Martinez O, Suarez MD, Gil A (1996) Effects of native and hydrolyzed whey protein on intestinal repair of severely starved rats at weaning. J Pediatr Gastroenterol Nutr 22:186–193

    Article  CAS  Google Scholar 

  • Boza JJ, Moennoz D, Vuichoud J, Jarret A, Gaudard-de-Weck D, Ballevre O (2000) Protein hydrolysate versus free AA-based diets on the nutritional recovery of the starved rat. Eur J Nutr 39:237–243

    Article  CAS  Google Scholar 

  • Brandsch M, Ganapathy V, Leibach F (1995) H+-peptide cotransport in Madin-Darby canine kidney cells: expression and calmodulin-dependent regulation. Am J Physiol 268:F391–F397

    CAS  Google Scholar 

  • Brodin B, Nielsen C, Steffansen B, Frokjaer S (2002) Transport of Peptidomimetic drugs by the intestinal di/tri-peptide transporter, PepT1. Pharmacol Toxicol 90:285–296

    Article  CAS  Google Scholar 

  • Buraczewska L (1981) Absorption of AAs in different parts of the small intestine in growing pigs. iii. absorption of constituents of protein hydrolysates. Acta Physiol Pol 32:569–584

    CAS  Google Scholar 

  • Burrin DG, Reeds PJ (1997) Alternative fuels in the gastrointestinal tract. Curr Opin Gastroenterol 13:165–170

    Article  Google Scholar 

  • Burston D, Taylor E, Matthews D (1980) Kinetics of uptake of lysine and lysyl-lysine by hamster jejunum in vitro. Clin Sci 59:285–287

    CAS  Google Scholar 

  • Busche RJ, Jeromin A, Von Engelhard W, Rechkemmer G (1993) Basolateral mechanisms of intracellular pH regulation in the colonic epithelial cell line HT29 clone 19A. Eur J Physiol 425:219–224

    Article  CAS  Google Scholar 

  • Buyse M, Berlioz F, Guilmeau S, Tsocas A, Voisin T, Peranzi G et al (2001) PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. J Clin Investig 108:1483–1494

    CAS  Google Scholar 

  • Buyse M, Charrier L, Sitaraman S, Gewirtz A, Merlin D (2003) Interferon-γ increases hPepT1-mediated uptake of di-tripeptides including the bacterial tripeptide fMLP in polarized intestinal epithlia. Am J Pathol 163:1969–1977

    Article  CAS  Google Scholar 

  • Carter RF, Bitar KN, Zfass AM, Makhlouf GM (1978) Inhibition of VIP-stimulated intestinal secretion and cyclic AMP production by somatostatin in the rat. Gastroenterology 74:726–730

    CAS  Google Scholar 

  • Cezard JP, Tran TA, Macry J, Zarrabian S, Roger L, Bressolier P, Julien R, Mendy F, Kahn JM (1994) Effects of two protein hydrolysates on growth, nitrogen balance and small intestine adaptation in growing rats. Biol Neonate 65:60–67

    Article  CAS  Google Scholar 

  • Chen H, Pan Y, Wong E, Webb K Jr (2002) Characterization and regulation of a cloned ovine gastrointestinal peptide transporter (oPepT1) expressed in a mammalian cell line. J Nutr 132:38–42

    CAS  Google Scholar 

  • Coutinho E, Ferreira H, Assuncao M, Carvalho S, Oliveira S, Francelino A (2002) The use of protein hydrolysate improves the protein intestinal absorption in undernourished mice infected with Schistosoma mansoni. Rev Soc Bras Med Trop 35:585–590

    Article  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  CAS  Google Scholar 

  • Daniel H, Morse EL, Adibi SA (1991) The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alteration in pH gradient and membrane potential. J Biol Chem 266:19917–19924

    CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Burrin DG, Vann RC, Reeds PJ, Nguyen HV, Beckett PR, Bush JA (2002) Acute IGF-I infusion stimulates protein synthesis in skeletal muscle and other tissues of neonatal pigs. Am J Physiol Endocrinol Metab 283:E638–E647

    CAS  Google Scholar 

  • Defilippi C, Cumsille F (2001) Small-intestine absorption during continuous intraduodenal infusion of nutrients in dogs. Nutrition 17:254–258

    Article  CAS  Google Scholar 

  • Doring F, Will J, Amasheh S, Clauss W, Ahlbrecht H, Daniel H (1998) Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J Biol Chem 4:23211–23218

    Article  Google Scholar 

  • Fairclough P, Silk D, Clark M, Dawson A (1975) New evidence for intact di- and tripeptide absorption. Gut 16:843, Abstract

    CAS  Google Scholar 

  • Fan X, Childs GV (1995) Epidermal growth factor and transforming growth factor-alpha messenger ribonucleic acids and their receptors in the rat anterior pituitary: localization and regulation. Endocrinology 136:2284–2293

    Article  CAS  Google Scholar 

  • Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH et al (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 7:563–566

    Article  Google Scholar 

  • Fei YJ, Ganapathy V, Leibach FH (1998) Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog Nucleic Acid Res Mol Biol 58:239–261

    Article  CAS  Google Scholar 

  • Fei YJ, Sugawara M, Liu JC, Li HW, Ganapathy V, Ganapathy ME, Leibach FH (2000) CDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PepT1. Int J Biochem Biophys 1492:145–154

    CAS  Google Scholar 

  • Ferraris R, Carey H (2000) Intestinal transport during fasting and malnutrition. Annu Rev Nutr 20:195–219

    Article  CAS  Google Scholar 

  • Ferraris RP, Diamond J, Kwan WW (1988) Dietary regulation of intestinal transport of the dipeptide carnosine. Am J Physiol 255:G143–G150

    CAS  Google Scholar 

  • Firmansah A, Suwandito L, Penn D, Lebenthal E (1989) Biochemical and morphological changes in the digestive tracts of rats after prenatal and postnatal malnutrition. Am J Clin Nutr 50:261–268

    Google Scholar 

  • Fisher DA, Lakshmanan J (1990) Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 11:418–442

    Article  CAS  Google Scholar 

  • Fitzpatrick DW, Fisher H (1982) Carnosine, histidine, and wound healing. Surgery 91:56–60

    CAS  Google Scholar 

  • Fujita T, Majikawa Y, Umehisa S, Okada N, Yamamoto A, Ganapathy V, Leibach F (1999) σ-Receptor ligand-induced up-regulation of the H+/peptide transporter PEPT1 in the human intestinal cell line Caco-2. Biochem Biophys Res Commun 261:242–246

    Article  CAS  Google Scholar 

  • Ganapathy V, Burckhardt G, Leibach FH (1984) Caharacteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem 259:8954–8959

    CAS  Google Scholar 

  • Ganapathy V, Brandsch M, Leibach F (1994) Intesinal transport of AAs and peptides. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 1773–1794

    Google Scholar 

  • Gardner ML (1982) Absorption of intact peptides: studies on transport of protein digests and dipeptides across rat small intestine in vitro. Q J Exp Physiol 67:629–637

    CAS  Google Scholar 

  • Gardner ML (1984) Intestinal assimilation of intact peptides and proteins from the diet-a neglected field? Biol Rev 59:289–331

    Article  CAS  Google Scholar 

  • Gardner MLG (1994) Absorption of intact proteins and peptides. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 1795–1820

    Google Scholar 

  • Gardner ML, Lindblad BS, Burston D, Matthews DM (1983) Trans-mucosal passage of intact peptides in the guinea-pig small intestine in vivo: a re-appraisal. Clin Sci 64(4):433–439

    CAS  Google Scholar 

  • Gariballa SE, Sinclair AJ (2000) Carnosine: physiological properties and therapeutic potential. Age Ageing 29:207–210

    Article  CAS  Google Scholar 

  • Gingerich RL, Gilbert WR, Comens P, Gavin JR 3rd (1987) Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa. Diabetes 36:1124–1129

    Article  CAS  Google Scholar 

  • Giusi-Perier A, Fiszlewicz M, Rerat A (1989) Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in unanesthetized pigs. J Anim Sci 67:386–402

    CAS  Google Scholar 

  • Grimble GK, Rees RG, Keohane PP, Cartwright T, Desreumaux M, Silk DB (1987a) Effect of Peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterology 92:136–142

    CAS  Google Scholar 

  • Grimble GK, Keohane PP, Higgins BE, Keminski MV Jr, Silk DB (1987b) Effect of peptide chain length on AA and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clin Sci 71:65–69

    Google Scholar 

  • Gutierrez MA, Mitsuya T, Hatta H, Koketsu M, Kobayashi R, Juneja LR, Kim M (1998) Comparison of egg-yolk protein hydrolysate and soyabean protein hydrolysate in terms of nitrogen utilization. Br J Nutr 80:477–484

    CAS  Google Scholar 

  • Han XT, Xue B, Du JZ, Hu LH (2001) Net fluxes of peptide and AA across mesenteric-drained and portal-drained viscera of yak cows fed a straw-concentrate diet at maintenance level.J Agric Sci 136:119–127

    Article  CAS  Google Scholar 

  • Hara H, Funabiki R, Iwata M, Yamazaki K (1984) Portal absorption of small peptides in rats under unrestrained conditions. J Nutr 114:1122–1129

    CAS  Google Scholar 

  • Hegarty JE, Moriarty PD, Fairclough KJ, Kelly MJ, Clark ML (1982a) Effects of concentration on in vivo absorption of a peptide containing protein hydrolysate. Gut 23:304–309

    Article  CAS  Google Scholar 

  • Hegarty JE, Fairclough PD, Moriarty KJ, Clark ML, Kelly MJ, Dawson AM (1982b) Comparison of plasma and intraluminal AA profiles in man after meals containing a protein hydrolysate and equivalent AA mixture. Gut 23:670–674

    Article  CAS  Google Scholar 

  • Heger J (2003) Essential to non-essential AA ratios. In: D’Mello JPF (ed) AAs in animal nutrition. CAB International, Wallingford, UK, pp 103–124

    Google Scholar 

  • Hendricks W (2003) Canine and feline AA requirements for different physiological functions. In: D’Mello JPF (ed) AAs in animal nutrition. CAB International, Wallingford, UK, pp 411–426

    Google Scholar 

  • Ihara T, Tsujikawa T, Fujiyama Y, Bamba T (2000) Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 61:59–67

    Article  CAS  Google Scholar 

  • Janmaat M, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8:576–586

    Article  CAS  Google Scholar 

  • Jepson M, Bates P, Broadbent P, Pell J, Millward D (1988) Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol 255:E166–E172

    CAS  Google Scholar 

  • Kajikawa K, Yasui W, Sumiyoshi H, Yoshida K, Nakayama H, Ayhan A et al (1991) Expression of epidermal growth factor in human tissues. Immunohistochemical and biochemical analysis. Virchows Arch A Pathol Anat Histopathol 418:27–32

    Article  CAS  Google Scholar 

  • Kats L, Nelssen J, Tokach M, Goodband R, Hansen J, Laurin J (1994) The effect of spray-dried porcine plasma on growth performance in the early-weaned pig. J Anim Sci 72:2075–2081

    CAS  Google Scholar 

  • Kelly D, McFadyen M, King TP, Morgan PJ (1992) Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reprod Fertil Dev 4:183–191

    Article  CAS  Google Scholar 

  • Kennedy DJ, Leibach FH, Ganapathy V, Thwaites DT (2002) Optimal absorptive transport of the dipeptide glycylsarcosine is dependent on functional Na+/H+ exchange activity. Eur J Physiol 445:139–146

    Article  CAS  Google Scholar 

  • Kilberg MS, Haussinger D (1992) AA transport in liver. In: Kilberg MS, Haussinger D (eds) Mammalian AA transport. Plenum Press, New York, pp 133–148

    Google Scholar 

  • Kim Y, Uotani S, Pierroz D, Flier J, Kahn B (2000) In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues: overlapping but distinct pathways from insulin. Endocrinology 141:2328–2339

    Article  CAS  Google Scholar 

  • Koeln LL, Schlagheck TG, Webb KE Jr (1993) AA flux across the gastrointestinal tract and liver of calves. J Dairy Sci 76:2275–2285

    Article  CAS  Google Scholar 

  • Krehbiel C, Matthews J (2003) Absorption of AAs and peptides. In: D’Mello JPF (ed) AAs in animal nutrition. CAB International, Wallingford, UK, pp 41–70

    Google Scholar 

  • Le Bacquer O, Laboisse C, Darmaun D (2002) Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to “luminal fasting”. Am J Physiol 285:G128–G136

    Google Scholar 

  • Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401

    Article  CAS  Google Scholar 

  • Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H et al (1995) Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 270:6456–6463

    Article  CAS  Google Scholar 

  • Lima A, Carvalho G, Figueiredo A, Gifoni A, Soares A, Silva E, Guerrant R (2002) Effects of an alanyl-glutamine-based oral rehydration and nutrition therapy solution on electrolyte and water absorption in a rat model of secretory diarrhea induced by cholera toxin. Nutrition 18:458–462

    Article  CAS  Google Scholar 

  • Lindemann M, Cromwell G, Monegue H, Cook H, Soltwedel K, Thomas S, Easter R (2000) Feeding value of an enzymatically digested protein for early-weaned pigs. J Anim Sci 78:318–327

    CAS  Google Scholar 

  • MacDonald RS, Thornton WH Jr, Bean TL (1993) Insulin and IGF-1 receptors in a human intestinal adenocarcinoma cell line (Caco-2): regulation of Na+ glucose transport across the brush border. J Recept Res 13:1093–1113

    CAS  Google Scholar 

  • Marks SL (1998) The principles and practical application of enteral nutrition. Vet Clin N Am Small Anim Pract 28:677–708

    CAS  Google Scholar 

  • Marrs TC, Addison JM, Burston D, Matthews DM (1975) Changes in plasma AA concentrations in man after ingestion of an AA mixture simulating casein, and a tryptic hydrolysate of casein. Br J Nutr 34:259–265

    CAS  Google Scholar 

  • Maruyama S, Nonaka I, Tanaka H (1993) Inhibitory effects of enzymatic hydrolysates of collagen and collagen-related synthetic peptides on fibrinogen/thrombin clotting. Int J Biochem Biophys 1164:215–218

    CAS  Google Scholar 

  • Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci Biotechnol Biochem 58:2244–2245

    Article  CAS  Google Scholar 

  • Matsui T, Li CH, Tanaka T, Maki T, Osajima Y, Matsumoto K (2000) Depressor effect of wheat germ hydrolysate and its novem angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol Pharm Bull 23:427–431

    Article  CAS  Google Scholar 

  • Matthews DM (1991) Protein absorption: development and present state of the subject. Wiley-Liss, New York

    Google Scholar 

  • Matthews JC (2000a) AA and peptide transport systems. In: D’Mello JPF (ed) Farm animal metabolism and nutrition. CAB International, Wallingford, UK, pp 3–22

    Chapter  Google Scholar 

  • Matthews JC (2000b) Peptide absorption: where peptides fit in protein nutrition and metabolism. In: Lyons TP, Jacques KA (eds) Biotechnology in the feed industry. Proceeding’s of Alltech’s sixteenth annual symposium. Nottingham University Press, Nottingham, UK, pp 357–368

    Google Scholar 

  • Matthews DM, Addison JM, Burston D (1974) Evidence for active transport of the dipeptide carnosine (β-alanyl-L-histidine) by hamster jejunum in vitro. Clin Sci Mol Med 46:693–705

    CAS  Google Scholar 

  • McCormick ME, Webb KE Jr (1982) Plasma free, erythrocyte free and plasma peptide AA exchange of calves in steady state and fasting metabolism. J Nutr 112:276–282

    CAS  Google Scholar 

  • Meridith D, Boyd CA (2000) Structure and function of eukaryotic peptide transporters. Cell Mol Life Sci 57:754–778

    Article  Google Scholar 

  • Miyoshi S, Ishikawa H, Kaneko T, Fukui F, Tanaka H, Maruyama S (1991) Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agric Biol Chem 55:1313–1318

    Article  CAS  Google Scholar 

  • Monchi M, Rerat AA (1993) Comparison of net protein utilization of milk protein milk enzymatic hydrolysates and free AA mixtures with a close pattern in the rat. JPEN J Parenter Enteral Nutr 17:355–363

    Article  CAS  Google Scholar 

  • Moughan PJ, Pedraza M, Smith WC, Williams M, Wilson MN (1990) An evaluation with piglets of bovine milk, hydrolyzed bovine milk, and isolated soybean proteins included in infant milk formulas. I. effect on organ development, digestive enzyme activities, and AA digestibility.J Pediatr Gastrointestinal Nutr 10:385–394

    Article  CAS  Google Scholar 

  • Muller U, Brandsch M, Prasad P, Fei Y, Ganapathy V, Leibach F (1996) Inhibition of the H+/peptide cotransporter in the human intestinal cell line Caco-2 by cyclic AMP. Biochem Biophys Res Commun 218:461–465

    Article  CAS  Google Scholar 

  • Nagai K, Suds T, Kawasaki K, Mathuura S (1986) Action of carnosine and β-alanine on wound healing. Surgery 100:815–821

    CAS  Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Takano T (1995) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors of angiotensin I-converting enzyme. J Dairy Sci 78:1253–1257

    Article  CAS  Google Scholar 

  • Nakano T, Simatani M, Murakami T, Sato N, Idota T (1994a) Digestion and absorption of enzymatically hydrolyzed whey protein. J Jpn Soc Nutr Food Sci 47:195–201

    Article  Google Scholar 

  • Nakano T, Simatani M, Murakami T, Sato N, Idota T (1994b) Utilization of nitrogen in enzymatically hydrolyzed whey protein. J Jpn Soc Nutr Food Sci 47:203–208

    Article  CAS  Google Scholar 

  • Naruhashi K, Sai Y, Tamai I, Susuki N, Tsuji A (2002) PepT1 mRNA expression is induced by starvation and its level correlated with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm Res 19:1417–1423

    Article  CAS  Google Scholar 

  • Nielsen C, Brodin B (2003) Di/tri-peptide transporters as drug delivery targets: regulation of transport under physiological and patho-physiological conditions. Curr Drug Targets 4:373–388

    Article  CAS  Google Scholar 

  • Nielsen CU, Amstrup J, Steffansen B, Frokjaer S, Brodin B (2001) Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol 281:G191–G199

    CAS  Google Scholar 

  • Nielsen CU, Amstrup J, Nielsen R, Steffansen B, Frokjaer S, Brodin B (2003) Epidermal growth factor and insulin short-term increase hPepT1-mediated glycylsarcosine uptake in Caco-2 cells. Acta Physiol Scand 178:139–148

    Article  CAS  Google Scholar 

  • Nunez M, Bueno J, Ayudarte M, Almendros A, Rios A, Suarez M, Gil A (1996) Dietary restriction induces biochemical and morphometric changes in the small intestine of nursing piglets. J Nutr 126:933–944

    CAS  Google Scholar 

  • Ogihara H, Suzuki T, Nagamachi Y, Inui KI, Takata K (1999) Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of AAs. Histochem J 31:169–174

    Article  CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane AA transporters. Physiol Rev 78:969–1054

    CAS  Google Scholar 

  • Pan Y, Wong EA, Bloomquist JR, Webb KE Jr (2001) Expression of a cloned ovine gastrointestinal peptide transporter (oPepT1) in Xenopus oocytes induces uptake of oligopeptides in vitro. J Nutr 131:1264–1270

    CAS  Google Scholar 

  • Pettigrew JE, Harmon BG, Simon J, Baker DH (1977) Milk proteins for artificially reared piglets: II. Comparison to a skim milk hydrolysate. J Anim Sci 44:383–388

    CAS  Google Scholar 

  • Playford RJ, Hanby AM, Gschmeissner S, Pfeiffer LP, Wright NA, McGarrity T (1996) The epidermal growth factor (EGF-R) is present on the basolateral, but not apical, surface of enterocytes in the human gastrointestinal tract. Gut 39:262–266

    Article  CAS  Google Scholar 

  • Pluske J, Thompson M, Atwood C, Bird P, Williams I, Hartmann P (1996) Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. Br J Nutr 76:409–422

    Article  CAS  Google Scholar 

  • Poullain MG, Cezard JP, Marche C, Roger L, Mendy F, Broyart JP (1989a) Dietary whey proteins and their peptides or AAs: effects on the jejunal mucosa of starved rats. Am J Clin Nutr 49:71–76

    CAS  Google Scholar 

  • Poullain MG, Cezard JP, Roger L, Mendy F (1989b) Effect of whey proteins, their oligopeptide hydrolysates and free AA mixtures on growth and nitrogen retention in fed and starved rats. JPEN J Parenter Enteral Nutr 13:382–386

    Article  CAS  Google Scholar 

  • Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J, Frazer ME (1997) Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 237:E408–E415

    Google Scholar 

  • Remillard R, Armstrong P, Davenport D (2000) Assisted feeding in hospitalized patients: enteral and parenteral nutrition. In: Hand MS, Thatcher CD, Remillard RL et al (eds) Small animal clinical nutrition (Ch. 12), 4th edn. Walsworth, Marceline, MO

    Google Scholar 

  • Rerat A (1993) Nutritional supply of proteins and absorption of their hydrolysis products: consequences on metabolism. Proc Nutr Soc 52:335–344

    Article  CAS  Google Scholar 

  • Rerat A (1995) Nutritional value of protein hydrolysis products (oligopeptides and FAAs) as a consequence of absorption and metabolism kinetics. Arch Anim Nutr 48:23–36

    CAS  Google Scholar 

  • Rerat A, Nunes CS (1989) AA absorption and production of pancreatic hormones in non-­anaesthetized pigs after duodenal infusions of a milk enzymatic hydrolysate or of FAAs. J Nutr 60:121–136

    Article  CAS  Google Scholar 

  • Rerat A, Nunes CS, Mendy F, Vaissade P, Vaugelade P (1992) Splanchnic fluxes of AAs after duodenal infusion of carbohydrate solutions containing free-AAs or oligopeptides in the non-anaesthetized pig. Br J Nutr 68:111–138

    Article  CAS  Google Scholar 

  • Ririe DG, Roberts PR, Shouse MN, Zaloga GP (2000) Vasodilatory actions of the dietary peptide carnosine. Nutrition 16:168–172

    Article  CAS  Google Scholar 

  • Roberts P, Black K, Santamauro J, Zaloga G (1998) Dietary peptides improve wound healing following surgery. Nutrition 14:266–269

    Article  CAS  Google Scholar 

  • Rocha F, Musch M, Lishanskiy L, Bookstein C, Sugi K, Xie U, Chang E (2003) IFN-γ downregulates expression of Na+/H+ exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol Cell Physiol 280:C1224–C1232

    Google Scholar 

  • Rubio-Aliaga I, Daniel H (2002) Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23:434–440

    Article  CAS  Google Scholar 

  • Saiga A, Okumura T, Makihara T, Katsuta S, Shimizu T, Yamada R, Nishimura T (2003) Angiotensin I-converting enzyme inhibitory peptides in hydrolyzed chicken breast muscle extract. J Agric Food Chem 51:1741–1745

    Article  CAS  Google Scholar 

  • Saito H, Okuda M, Terada T, Sasaki S, Inui K (1995) Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther 275:1631–1637

    CAS  Google Scholar 

  • Samonina G, Ashmarin I, Lyapina L (2002) Glyproline peptide family: review on bioactivity and possible origins. Pathophysiology 8:229–234

    Article  CAS  Google Scholar 

  • Sarosiek J, Bilski J, Murty V, Slomiany A, Slomiany BL (1988) Role of salivary epidermal growth factor in the maintenance of physiochemical characteristics of oral and gastric mucosal mucus coat. Biochem Biophys Res Commun 152:1421–1427

    Article  CAS  Google Scholar 

  • Sarosiek J, Feng T, McCallum RW (1991) The interrelationship between salivary epidermal growth factor and the functional integrity of the esophageal mucosal barrier in the rat. AmJ Med Sci 302:359–363

    Article  CAS  Google Scholar 

  • Satoh J, Tsujikawa T, Fujiyama Y, Bamba T (2003a) Nutritional benefits of enteral alanyl-­glutamine supplementation on rat small intestine damage induced by cyclophosphamide. J Gastroenterol Hepatol 18:719–725

    Article  CAS  Google Scholar 

  • Satoh J, Tsujikawa T, Fujiyama Y, Bamba T (2003b) Eneral alanyl-glutamine supplement promotes intesinal adaptation in rats. Int J Mol Med 12:615–620

    CAS  Google Scholar 

  • Schweiger M, Steffl M, Amselgruber W (2003) Differential expression of EGF receptor in the pig duodenum during the transition phase from maternal milk to solid food. J Gastroenterol 38:636–642

    Article  CAS  Google Scholar 

  • Seal CJ, Parker DS (1991) Isolation and characteriation of circulating low molecular weight peptides in steer, sheep and rat portal and peripheral blood. Comp Biochem Physiol 99B:679–685

    CAS  Google Scholar 

  • Sekikawa S, Kawai Y, Fujiwara A, Takeda K, Tegoshi T, Uchikawa R, Yamada M, Arizono N (2003) Alterations in hexose, AA and peptide transporter expression in intestinal epithelial cells during Nippostrongylus brasiliensis infection in the rat. Int J Parasitol 33:1419–1426

    Article  CAS  Google Scholar 

  • Silk DBA, Perrett D, Clark ML (1973a) Intestinal transport of two dipeptides containing the same two neutral AAs in man. Clin Sci Mol Med 45:291–299

    CAS  Google Scholar 

  • Silk DBA, Marrs TC, Addison JM, Burston D, Clark ML, Matthews DM (1973b) Absorption of AAs from an AA mixture simulating casein and a tryptic hydrolysate of casein in man. Clin Sci Mol Med 45:715–719

    CAS  Google Scholar 

  • Silk DBA, Clark ML, Marrs TC, Addison JM, Burston D, Matthews DM (1975) Jejunal absorption of an AA mixture simulating casein and an enzyme hydrolysate of casein prepared for oral administration to normal adults. Br J Nutr 33:95–100

    Article  CAS  Google Scholar 

  • Silk DBA, Chung YC, Berger KL, Conley K, Beigler M, Sleisenger MH, Spiller GA, Kim YS (1979) Comparison of oral feeding of peptide and AA meals to normal human subjects. Gut 20:291–299

    Article  CAS  Google Scholar 

  • Silk DBA, Fairclough P, Clark M, Hagerty J, Marrs T, Addison J, Burston D, Clegg K, Matthews D (1980) Use of a peptide rather than free AA nitrogen source in chemically defined “elemental” diets. JPEN J Parenter Enteral Nutr 4:548–553

    Article  CAS  Google Scholar 

  • Sleisenger MH, Pelling D, Burston D, Matthews DM (1977) AA concentrations in portal venous plasma during absorption from the small intestine of the guinea pig of an AA mixture simulating casein and a partial enzymic hydrolysate of casein. Clin Sci Mol Med 52:259–267

    CAS  Google Scholar 

  • Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP, Attoub S, Lehy T, Henin D, Mignon M, Lewin MJ (2000) Leptin secretion and leptin receptor in the human stomach. Gut 47:178–183

    Article  CAS  Google Scholar 

  • Stoll B, Henry J, Reeds P, Yu H, Yahoor F, Burrin D (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential AAs in milk protein-fed piglets. J Nutr 128:606–614

    CAS  Google Scholar 

  • Sun B, Zhao X, Wang G, Li N, Li J (2003a) Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxial/reoxygenation management. World J Gastroenterol 9:808–812

    CAS  Google Scholar 

  • Sun B, Zhao X, Wang G, Li N, Li J (2003b) Changes of biological functions of dipeptide transporter (PepT1) and hormonal regulation in severe scald rats. World J Gastroenterol 12:2782–2785

    Google Scholar 

  • Tagari H, Webb K Jr, Theurer B, Huber T, DeYoung D, Cuneo P et al (2004) Portal drained viceral flux, hepatic metabolism, and mammary uptake of free and peptide-bound AAs and milk AA output in dairy cows fed diets containing corn grain steam flaked at 360 or steam rolled at 490 g/L. J Dairy Sci 87:413–430

    Article  CAS  Google Scholar 

  • Tanaka H, Miyamoto KI, Morita K, Haga H, Segawa H, Shiraga T, Fujioka A, Kouda T, Taketani Y, Hisano S, Fukui Y, Kitagawa K, Takeda E (1998) Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology 114:714–723

    Article  CAS  Google Scholar 

  • Thamotharan M, Bawani S, Zhou X, Adibi S (1999a) Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism 48:681–684

    Article  CAS  Google Scholar 

  • Thamotharan M, Bawani S, Zhou X, Adibi S (1999b) Hormonal regulation of oligopeptide transporter pept-1 in a human intestinal cell line. Am J Physiol 276:C821–C826

    CAS  Google Scholar 

  • Torres N, Lopez G, De Santiago S, Hutson S, Tovar A (1998) Dietary protein level regulates expression of the mitochondrial branched-chain aminotransferase in rats. J Nutr 128:1368–1375

    CAS  Google Scholar 

  • Tsuji A, Tamai I (1996) Carrier-mediated intestinal transport of drugs. Pharm Res 13:963–977

    Article  CAS  Google Scholar 

  • Vaughan TJ, Pascall JC, James PS, Brown KD (1991) Expression of epidermal growth factor and its mRNA in pig kidney, pancreas, and other tissues. Biochem J 279:315–318

    CAS  Google Scholar 

  • Watanabe K, Terada K, Jinriki T, Sato J (2003) Effect of insulin on cephalexin uptake and transepithelial transport in the human intestinal cell line Caco-2. Eur J Pharm Sci 21:87–93

    Article  CAS  Google Scholar 

  • Wollheim CB, Biden TJ (1986) Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists. Ann NY Acad Sci 488:317–333

    Article  CAS  Google Scholar 

  • Woods CA, Matthews A, Etienne N, Davenport G, Matthews JC (2001) Molecular identification and biochemical characterization of canine PepT1 function in MDCK cells. FASEB J 15(5):A829

    Google Scholar 

  • Wu G (1998) Intestinal AA catabolism. J Nutr 128:1249–1252

    CAS  Google Scholar 

  • Wu G, Meier S, Knabe D (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    CAS  Google Scholar 

  • Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopolymers 43:129–143

    Article  CAS  Google Scholar 

  • Yamamoto S, Korin T, Anzai M, Wang MF, Hosoi A, Abe A, Kishi K, Inoue G (1985) Comparative effects of protein, protein hydrolysate and AA diets on nitrogen metabolism of normal, ­protein-deficient, gastrectomized or hepatectomized rats. J Nutr 115:1436–1446

    CAS  Google Scholar 

  • Yokoyama K, Chiba H, Yoshikawa M (1992) Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem 56:1541–1545

    Article  CAS  Google Scholar 

  • Zaloga GP, Ward KA, Prielipp RC (1991) Effect of enteral diets on whole body and gut growth in unstressed rats. JPEN J Parenter Enteral Nutr 15:42–47

    Article  CAS  Google Scholar 

  • Zanghi BM, Sipe G, Davenport G, Matthews JC (2004) Evaluation of glycylsarcosine and cefadroxil as substrates for non-invasive determination of canine small intestine PepT1 capacity and demonstration that maximal cefadroxil absorption occurs when consumed 4 h after meal ingestion [Abstract]. J Anim Sci 82(Suppl 1):245

    Google Scholar 

  • Zhao XT, McCamish MA, Miller RH, Wang L, Lin HC (1997) Intestinal transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis. Am Soc Nutr Sci 127:2350–2356

    CAS  Google Scholar 

  • Ziegler F, Ollivier JM, Cynober L, Masini JP, Coudray-Lucas C, Levy E, Giboudeau J (1990) Efficiency of enteral nitrogen support in surgical patients: small peptides υ non-degraded proteins. Gut 31:1277–1283

    Article  CAS  Google Scholar 

  • Ziegler F, Nitenberg G, Coudray-Lucas C, Lasser P, Giboudeau J, Cynober L (1998) Pharmacokinetic assessment of an oligopeptide-based enteral formula in abdominal surgery patients. Am J Clin Nutr 67:124–128

    CAS  Google Scholar 

  • Ziegler F, Evans M, Fernandez-Estivariz C, Jones DP (2003) Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu Rev Nutr 23:229–261

    Article  CAS  Google Scholar 

  • Ziemlanski S, Cieslakowa D, Kunachowicz H, Palaszewska M (1978) Balanced Intraintestinal Nutrition: digestion, absorption and biological value of selected preparations of milk proteins. Acta Physiol Pol 29:543–556

    CAS  Google Scholar 

  • Zijlstra RT, Mies AM, McCracken BA, Odle J, Gaskins HR, Lien EL, Donovan SM (1996) Short-term metabolic reponses do not differ between neonatal piglets fed formulas containing hydrolyzed or intact soy proteins. J Nutr 126:913–923

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhanghi, B.M., Matthews, J.C. (2008). Physiological Importance and Mechanisms of Protein Hydrolysate Absorption. In: Pasupuleti, V., Demain, A. (eds) Protein Hydrolysates in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6674-0_9

Download citation

Publish with us

Policies and ethics