Skip to main content

Sampling Adults with Non-attractant Traps

  • Chapter
  • 2020 Accesses

Adults of haematophagous Diptera, especially mosquitoes, are usually caught by using human or animal baits or in light or carbon dioxide traps. Most of these attractant traps collect predominantly unfed females orientated to host-feeding. The use of different baits or attractants usually results in different groups of species being collected, e.g. anthropophilic or ornithophilic species. Often attractant traps are used specifically to collect certain species for isolation of viruses or other pathogens, and in this case the absolute numbers collected rather than the efficiency of collection of different species takes priority. Sometimes, however, especially in ecological investigations, more representative samples of mosquito populations are needed. Because of the virtual impossibility of finding an attractant trap that will sample equally all species, non-attractant traps are preferred. A disadvantage of non-attractant traps, however, is that because they catch mosquitoes only in their immediate area the numbers obtained are small unless mosquito populations are large. All traps discussed in this chapter sample the aerial population, hence the numbers caught depend not only on population density but also on the flight activities of the individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan SA, Stoffolano JG (1986) Effects of background contrast on visual attrac-tion and orientation of Tabanus nigrovittatus (Diptera: Tabanidae). Environ Entomol 15: 689-694

    Google Scholar 

  • Allison D, Pike KS (1988) An expensive suction trap and its use in an aphid moni-toring network. J Agric Entomol 5: 103-107

    Google Scholar 

  • Anon (1979) Vector Topics Number 4: Biology and Control of Aedes aegypti. U.S. Dept. Health Education and Welfare, Public Health Service

    Google Scholar 

  • Banks CJ (1959) Experiments with suction traps to assess the abundance of Syr-phidae (Diptera), with special reference to aphidophagous species. Entomol Exp Appl 2: 110-124

    Google Scholar 

  • Barnard DR (1979) A vehicle-mounted insect trap. Can Entomol 111: 851-854

    Google Scholar 

  • Barnard DR, Mulla MS (1977) A non-attractive sampling device for the collection of adult mosquitoes. Mosquito News 37: 142-144

    Google Scholar 

  • Barnard DR, Mulla MS (1978) The ecology of Culiseta inornata in the Colorado desert of California: Seasonal abundance, gonotrophic status, and oviparity of adult mosquitoes. Ann Entomol Soc Am 71: 397-400

    Google Scholar 

  • Benzon GL, Lake RW, Murphey FJ (1986) A remotely piloted vehicle (RPV) for ULV experimentation. J Am Mosq Control Assoc 2: 86-87

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL (1961) Field activity studies of adult Culicoides furens. Ann Entomol Soc Am 54: 149-156

    Google Scholar 

  • Bidlingmayer WL (1964) The effect of moonlight on the flight activity of mosqui-toes. Ecology 45: 87-94

    Google Scholar 

  • Bidlingmayer WL (1966) Use of the truck trap for evaluating adult mosquito populations. Mosquito News 26: 139-143

    Google Scholar 

  • Bidlingmayer WL (1967) A comparison of trapping methods for adult mosquitoes: Species response and environmental influence. J Med Entomol 4: 200-220

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL (1971) Mosquito flight paths in relation to the environment. I. Illumination levels, orientation, and resting places. Ann Entomol Soc Am 64: 1121-1131

    Google Scholar 

  • Bidlingmayer WL (1974) The influence of environmental factors and physiologi-cal stage on flight patterns of mosquitoes taken in the vehicle aspirator and truck, suction, bait and New Jersey light traps. J Med Entomol 11: 119-146

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL (1975) Mosquito flight paths in relation to the environment. Ef-fect of vertical and horizontal visual barriers. Ann Entomol Soc Am 68: 51-57

    Google Scholar 

  • Bidlingmayer WL (1985) The measurement of adult mosquito population changes—some considerations. J Am Mosq Control Assoc 1: 328-348

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL, Evans DG (1985) A telescopic collecting cup changer for in-sect traps. J Am Mosq Control Assoc 1: 33-37

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL, Evans DG (1987) The distribution of female mosquitoes about a flight barrier. J Am Mosq Control Assoc 3: 369-377

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL, Hem DG (1979) Mosquito (Diptera: Culicidae) flight behav-iour near conspicuous objects. Bull Entomol Res 69: 691-700

    Google Scholar 

  • Bidlingmayer WL, Hem DG (1980) The range of visual attraction and the effect of competitive visual attractants upon mosquito (Diptera: Culicidae) flight. Bull Entomol Res 70: 321-342

    Google Scholar 

  • Bidlingmayer WL, Hem DG (1981) Mosquito flight paths in relation to the envi-ronment. Effect of the forest edge upon trap catches in the field. Mosquito News 41: 55-59

    Google Scholar 

  • Bidlingmayer WL, Schoof HF (1957) The dispersal characteristics of the salt-marsh mosquito, Aedes taeniorhynchus (Wiedemann) near Savannah, Georgia. Mos-quito News 17: 202-212

    Google Scholar 

  • Bidlingmayer WL, Evans DG, Hansen CH (1985) Preliminary study of the effects of wind velocities and wind shadows upon suction trap catches of mosquitoes (Diptera: Culicidae). J Med Entomol 22: 295-302

    CAS  PubMed  Google Scholar 

  • Bidlingmayer WL, Day JF, Evans DG (1995) Effect of wind velocity on suction trap catches of some Florida mosquitoes. J Am Mosq Control Assoc 11: 295-301

    CAS  PubMed  Google Scholar 

  • Breeland SG, Pickard E (1965) The Malaise trap—an efficient and unbiased mos-quito collecting device. Mosquito News 25: 19-21

    Google Scholar 

  • Broadbent L (1946) Alate aphids trapped in north-west Derbyshire, 1945. Proc R Entomol Soc Lond (A) 21: 41-46

    Google Scholar 

  • Broadbent L (1948) Aphis migration and the efficiency of the trapping method. Ann Appl Biol 35: 379-394

    CAS  PubMed  Google Scholar 

  • Browne SM, Bennett GF (1981) Response of mosquitoes (Diptera: Culicidae) to visual stimuli. J Med Entomol 18: 502-521

    Google Scholar 

  • Burgess RJ, Muir RC (1970) ‘A Modification of the Johnson-Taylor Suction Trap to provide a Twelve-Hour Segregation of the Catch.’ Rep East Malling Res Stn (1969), pp 169-170

    Google Scholar 

  • Butler GD (1965) A modified Malaise insect trap. Pan-Pacific Entomol 41: 51-53 Carroll MK, Bourg JA (1977) The night-time flight activity and relative abundance of fifteen species of Louisiana mosquitoes. Mosquito News 37: 661-664

    Google Scholar 

  • Catts EP (1970) A canopy trap for collecting Tabanidae. Mosquito News 30: 472-474

    Google Scholar 

  • Chamberlin JC, Lawson FR (1945) A mechanical trap for the sampling of aerial insect populations. Mosquito News 5: 4-7

    Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD (2003) Vertical-Looking Radar: a new tool for monitoring high-altitude insect migration. Bioscience 53: 503-511

    Google Scholar 

  • Christensen HA, de Vasquez AM, Boreham MM (1996) Host-feeding patterns of mosquitoes (Diptera: Culicidae) from central Panama. Am J Trop Med Hyg 55: 202-208

    CAS  PubMed  Google Scholar 

  • Corbet PS, Danks HV (1973) Seasonal emergence and activity of mosquitoes (Diptera: Culicidae) in a high-arctic locality. Can Entomol 105: 837-872

    Google Scholar 

  • Davies JB (1965) Studies on the dispersal of Leptoconops bequaerti (Kieffer) (Diptera: Ceratopogonidae) by Means of Wind Traps. Proc Int Congr Entomol XIIth (1964), pp 754-755

    Google Scholar 

  • Davies L, Roberts DM (1973) A net and a catch segregating apparatus mounted in a motor vehicle for field studies on flight activity of Simuliidae and other in-sects. Bull Entomol Res 63: 103-112

    Google Scholar 

  • Davies L, Roberts DM (1980) Flight activity of female black-flies (Diptera: Simuliidae) studies with a vehicle-mounted net in northern England. J Nat Hist 14: 1-16

    CAS  Google Scholar 

  • de Zulueta J (1950) A study of the habits of the adult mosquitoes dwelling in the savannas of Eastern Colombia. Am J Trop Med 30: 325-339

    Google Scholar 

  • Disney RHL (1966) A trap for Phlebotominae sandflies attracted to rats. Bull Entomol Res 56: 445-451

    CAS  PubMed  Google Scholar 

  • Dow RP, Gerrish GM (1970). Day-to-day change in relative humidity and the ac-tivity of Culex nigripalpus (Diptera: Culicidae). Ann Entomol Soc Am 63: 995-999

    CAS  PubMed  Google Scholar 

  • Dyce AL, Standfast HA, Kay BH (1972) Collection and preparation of biting midges (Fam. Ceratopogonidae) and other small Diptera for virus isolation. J Aust Entomol Soc 11: 91-96

    Google Scholar 

  • Easton EM, Price MA, Graham OH (1968) The collection of biting flies in West Texas with Malaise and animal-baited traps. Mosquito News 28: 465-469

    Google Scholar 

  • Farrow RA, Dowse JE (1984) Method of using kites to carry tow nets in the upper air for sampling migrating insects and its application to radar entomology. Bull Entomol Res 74: 87-95

    Google Scholar 

  • Freeman JA (1945) Studies in the distribution of insects by aerial currents. The insect population of the air from ground level to 300 feet. J Anim Ecol 14: 128-154

    Google Scholar 

  • Fröhlich G (1956) Methoden zur Bestimmung der Befalls-bzw. Bekämpfungster-mine verschiedener Rapssch ädlinge, insbesondere des Rapsstengelrüsslers (Ceuthorrhynchus napi Gyll). NachrBl dt Pflschutzdienst Berl 10: 48-53

    Google Scholar 

  • Gillies MT (1969) The ramp-trap, an unbaited device for flight studies of mosqui-toes. Mosquito News 29: 189-193

    Google Scholar 

  • Gillies MT, Snow WF (1967) A CO2-baited sticky trap for mosquitoes. Trans R Soc Trop Med Hyg 61: 20

    Google Scholar 

  • Gillies MT, Wilkes TJ (1969) A comparison of the range of attraction of animal baits and of carbon dioxide for some West African mosquitoes. Bull Entomol Res 59: 441-456

    CAS  PubMed  Google Scholar 

  • Gillies MT, Wilkes TJ (1970) The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res 60: 224-235

    Google Scholar 

  • Gillies MT, Wilkes TJ (1972) The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies in a freshwater area of West Africa. Bull Entomol Res 61: 389-404

    Google Scholar 

  • Gillies MT, Wilkes TJ (1976) The vertical distribution of some West African mosquitoes (Diptera: Culicidae) over open farmland in a freshwater area of the Gambia. Bull Entomol Res 66: 5-15

    Google Scholar 

  • Gillies MT, Wilkes TJ (1978) The effect of high fences on the dispersal of some West African mosquitoes (Diptera: Culicidae). Bull Entomol Res 68: 401-408

    Google Scholar 

  • Gillies MT, Wilkes TJ (1981) Field experiments with a wind tunnel on the flight speed of some West African mosquitoes (Diptera: Culicidae). Bull Entomol Res 71: 65-70

    Google Scholar 

  • Gillies MT, Jones MDR, Wilkes TJ (1978) Evaluation of a new technique for re-cording the direction of flight of mosquitoes (Diptera: Culicidae) in the field. Bull Entomol Res 68: 145-152

    Google Scholar 

  • Glick PA (1939) The distribution of Insects, Spiders, and Mites in the Air. Tech Bull U.S. Dept Agric No. 673

    Google Scholar 

  • Glick PA, Noble LW (1961) Airborne Movement of the Pink Bollworm and Other Arthropods. Tech Bull U.S. Dept Agric Agric Res Serv No. 1255

    Google Scholar 

  • Goma LKH (1965) The flight activity of some East African mosquitoes (Diptera: Culicidae). 1. Studies on a high steel tower in Zika forest, Uganda. Bull Entomol Res 56: 17-35

    CAS  PubMed  Google Scholar 

  • Goodenough JL, Jank PC, Carroll LE, Sterling WL, Redman EJ, Witz JA (1983) Collecting and preserving airborne arthropods in liquid at timed intervals with a Johnson-Taylor-type suction trap. J Econ Entomol 76: 960-963

    Google Scholar 

  • Gordon WM, Gerberg EJ (1945) A directional mosquito barrier trap. J Natn Malar Soc 4: 123-125

    Google Scholar 

  • Gorham RP (1946) The use of flight traps in the study of aphid movement. Aca-dian Naturalist 2: 106-111

    Google Scholar 

  • Gottwald TR, Tedders WL (1986) MADDSAP-1, a versatile remotely piloted vehicle for agricultural research. J Econ Entomol 79: 857-863

    Google Scholar 

  • Graham P (1969) A comparison of sampling methods for adult mosquito popula-tions in central Alberta, Canada. Quaest Entomol 5: 217-261

    Google Scholar 

  • Gregory PH (1951) Deposition of air-borne Lycopodium spores on cylinders. Ann Appl Biol 38: 357-376

    Google Scholar 

  • Gressitt JL, Gressitt MK (1962) An improved malaise trap. Pacific Insects 4: 87-90

    Google Scholar 

  • Gressitt JL, Sedlacek J, Wise KAJ, Yoshimoto CM (1961) A high speed airplane trap for air-borne organisms. Pacific Insects 3: 549-555

    Google Scholar 

  • Grieco JP, Achee NL, Andre RG, Roberts DR (2002) Host feeding preferences of Anopheles species collected by manual aspiration, mechanical aspiration, and from a vehicle-mounted trap in the Toledo district, Belize, Central America. J Am Mosq Control Assoc 18: 307-315

    PubMed  Google Scholar 

  • Grigarick AA (1959) A floating pan trap for insects associated with the water sur-face. J Econ Entomol 52: 348-349

    Google Scholar 

  • Gunstream SE, Chew RM (1967) A comparison of mosquito collection by Malaise and miniature light traps. J Med Entomol 4: 495-496

    CAS  PubMed  Google Scholar 

  • Hansens EJ, Bosler EM, Robin JW (1971) Use of traps for study and control of saltmarsh greenhead flies. J Econ Entomol 64: 1481-1486

    Google Scholar 

  • Hardy AC, Milne PS (1938) Studies in the distribution of insects by aerial cur-rents. Experiments in aerial two-netting from kites. J Anim Ecol 7: 199-229

    Google Scholar 

  • Hill MN (1971) A bicycle-mounted trap for collecting adult mosquitoes. J Med Entomol 8: 108-109

    CAS  PubMed  Google Scholar 

  • Hocking B (1970) Insect flight and entomologists’ inheritance Entomol News 81: 269-278

    Google Scholar 

  • Holbrook FR, Wuerthele W (1984) A lightweight, hand-portable vehicle-mounted insect trap. Mosquito News 44: 239-242

    Google Scholar 

  • Hollinger SE, Sivier KR, Irwin ME, Isard SA (1991) A helicopter-mounted isoki-netic aerial insect sampler. J Econ Entomol 84: 476-483

    Google Scholar 

  • Holzapfel EP, Harrell JC (1968) Transoceanic dispersal studies of insects. Pacific Insects 10: 115-153

    Google Scholar 

  • Horsfall WR (1942) Biology and Control of Mosquitoes in the Rice Area. Univ. Arkansas Agric Exp Stn Bull 427

    Google Scholar 

  • Horsfall WR (1961) Traps for determining direction of flight of insects. Mosquito News 21: 296-299

    Google Scholar 

  • Hudson JE (1981) Studies on flight activity and control of mosquitoes in the Edmonton area, 1971-73. Quaest Entomol 17: 179-188

    Google Scholar 

  • Isard SA, Irwin, ME, Hollinger SE (1990) Vertical distribution of aphids (Homoptera: Aphididae) in the planetary boundary layer. Environ Entomol 19: 1473-1484

    Google Scholar 

  • Janousek TE, Olson JK (1994) Effect of a lunar eclipse on the flight activity of mosquitoes in the upper Gulf coast of Texas. J Am Mosq Control Assoc 10: 222-224

    CAS  PubMed  Google Scholar 

  • Jenkins GJ (1981) Kites and meteorology. Weather 36: 294-300

    Google Scholar 

  • Johansen CA, Farrow RA, Morrisen A, Foley P, Bellis G, Van Den Hurk AF, Montgomery B, Mackenzie JS, Ritchie SA (2003) Collection of wind-borne haematophagous insects in the Torres Strait, Australia. Med Vet Entomol 17: 102-109

    CAS  PubMed  Google Scholar 

  • Johnson CG (1950a) A suction trap for small airborne insects which automatically segregates the catch into successive hourly samples. Ann Appl Biol 37: 80-91

    Google Scholar 

  • Johnson CG (1950b) The comparison of suction trap, sticky trap and tow-net for the quantitative sampling of small airborne insects. Ann Appl Biol 37: 268-285

    Google Scholar 

  • Johnson CG (1957) The distribution of insects in the air and the empirical relation of density to height. J Anim Ecol 26: 479-494

    Google Scholar 

  • Johnson CG, Taylor LR (1955a) The development of large suction traps for air-borne insects. Ann Appl Biol 43: 51-62

    Google Scholar 

  • Johnson CG, Taylor LR (1955b) The measurement of insect density in the air. Part 1. Laboratory Practices 4: 187-192

    Google Scholar 

  • Johnson CG, Taylor LR (1955c) The measurement of insect density in the air. Part II. Laboratory Practices 4: 235-239

    Google Scholar 

  • Johnson CG, Taylor LR, Southwood TRE (1962) High altitude migration of Oscinella frit L. (Diptera: Chloropidae). J Anim Ecol 31: 373-383

    Google Scholar 

  • Jónsson E, Gardarsson A, Gislason G (1986) A window trap used in the assess-ment of flight periods of Chrironomidae and Simuliidae (Diptera). Freshwater Biol 16: 711-719

    Google Scholar 

  • Kaniuka R (1985) Biocontrol takes off in a pilotless miniplane. Agr Res 33: 8-9

    Google Scholar 

  • Kay BH, Farrow RA (2000) Mosquito (Diptera: Culicidae) dispersal: implications for the epidemiology of Japanese and Murray Valley encephalitis viruses in Australia. J Med Entomol 37: 797-801

    CAS  PubMed  Google Scholar 

  • Kay BH, Sutton KA, Russell BM (2000) A sticky entry-exit trap for sampling mosquitoes in subterranean habitats. J Am Mosq Control Assoc 16: 262-265

    CAS  PubMed  Google Scholar 

  • Kettle DS, Edwards PB, Barnes A (1998) Factors affecting numbers of Culicoides in truck traps in coastal Queensland. Med Vet Entomol 12: 367-377

    CAS  PubMed  Google Scholar 

  • Killick-Kendrick R (1986) Sampling aerial populations of insects with a radio-controlled model aircraft. Antenna 10: 8-11

    Google Scholar 

  • Koch HG, Axtell RC, Baughman GR (1977) A suction trap for hourly sampling of coastal biting flies. Mosquito News 37: 674-680

    Google Scholar 

  • Kuntz KJ, Olson JK, Rade BJ (1982) Role of domestic animals as hosts for blood-seeking females of Psorophora columbiae and other mosquito species in Texas ricefields. Mosquito News 42: 202-210

    Google Scholar 

  • LePrince JA, Orenstein AJ (1916) Mosquito Control in Panama. G.P. Putnam’s Sons, London

    Google Scholar 

  • Loomis EC (1959) A method for more accurate determination of air volume dis-placement of light traps. J Econ Entomol 52: 343-345

    Google Scholar 

  • Love GJ, Smith WW (1957) Preliminary observations on the relation of light trap collections to mechanical sweep net collections in sampling mosquito populations. Mosquito News 17: 9-14

    Google Scholar 

  • Loy VA, Barnhart CS, Therrien AA (1968) A collapsible, portable vehicle-mounted insect trap. Mosquito News 28: 84-87

    Google Scholar 

  • Lumsden WHR (1957) Further Development of Trap to Estimate Biting Insect At-tack on Small Vertebrates. East Afr Virus Res Inst Rep July 1956-June 1957. Government Printer, Nairobi, pp 33-35

    Google Scholar 

  • Lumsden WHR (1958) A trap for insects biting small vertebrates. Nature 181: 819-820

    CAS  PubMed  Google Scholar 

  • Macaulay EDM, Tatchell GM, Taylor LR (1988) The Rothamsted Insect Survey ‘12-metre’ suction trap. Bull Entomol Res 78: 121-129

    Google Scholar 

  • Malaise R (1937) A new insect-trap. EntomolTijdskr 58: 148-160

    Google Scholar 

  • Marston N (1965) Some recent modifications in the design of Malaise insect traps with a summary of the insects represented in collections. J Kans Entomol Soc 38: 154-162

    Google Scholar 

  • Ming J-G, Jin H, Riley JR, Reynolds DR, Smith AD, Wang RL, Cheng J-Y, Cheng X-N (1993) Autumn southward ‘return’ migration of the mosquito Culex tritaeniorhynchus in China. Med Vet Entomol 7: 323-327

    CAS  PubMed  Google Scholar 

  • Montgomery BL, Ritchie SA, Hart AJ, Long SA, Walsh ID (2004) Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia. J Am Mosq Control Assoc 20: 365-369

    PubMed  Google Scholar 

  • Mulhern TD (1953) The use of mechanical traps in measuring mosquito popula-tions. Proc California Mosq Control Asso 21: 64-66

    Google Scholar 

  • Muller MJ, Murray MD, Edwards JA (1981) Blood-sucking midges and mosqui-toes feeding on mammals at Beatrice Hill, N. T. Aust J Zool 29: 573-588

    Google Scholar 

  • Murphy WL (1985) Procedure for the removal of insect specimens from sticky-trap material. Ann Entomol Soc Am 78: 881

    Google Scholar 

  • Nielsen ET (1960) A note on stationary nets. Ecology 41: 375-376

    Google Scholar 

  • Nielsen ET, Greve H (1950) Studies on the swarming habits of mosquitos and other Nematocera. Bull Entomol Res 41: 227-258

    Google Scholar 

  • Novak RJ, Peloquin J, Rohrer W (1981) Vertical distribution of adult mosquitoes (Diptera: Culicidae) in a northern deciduous forest in Indiana. J Med Entomol 18: 116-122

    Google Scholar 

  • Odinstov VS (1960) Air-catch of insects as a method of study upon entomofauna of vast territories. Entomol Obozr 39: 227-230 (In Russian)

    Google Scholar 

  • Pelham D (1976) The Penguin Book of Kites. Penguin, London

    Google Scholar 

  • Pinger RR, Rowley WA (1975) Host preferences of Aedes trivittatus (Diptera: Culicidae) in central Iowa. Am J Trop Med Hyg 24: 889-893

    CAS  PubMed  Google Scholar 

  • Pinger RR, Rowley WA, Wong YW, Dorsey DC (1975) Trivittatus virus infec-tions in wild mammals and sentinel rabbits in central Iowa. Am J Trop Med Hyg 24: 1006-1009

    CAS  PubMed  Google Scholar 

  • Provost MW (1952) The dispersal of Aedes taeniorhynchus. I. Preliminary studies. Mosquito News 12: 174-190

    Google Scholar 

  • Provost MW (1957) The dispersal of Aedes taeniorhynchus. II. The second ex-periment. Mosquito News 17: 233-247

    Google Scholar 

  • Provost MW (1960) The dispersal of Aedes taeniorhynchus. III. Study methods for migrating exodus. Mosquito News 20: 148-161

    Google Scholar 

  • Pruess KP, Pruess NC (1966) Note on a Malaise trap for determining flight direc-tion of insects. J Kans Entomol Soc 39: 98-102

    Google Scholar 

  • Rajagopalan PK, Brooks GD, Menon PKB, Mani TR (1977) Observations on the biting activity and flight periodicity of Culex pipiens fatigans in an urban area. J Commun Dis 9: 22-31

    Google Scholar 

  • Reiter P (1983) A portable, battery-powered trap for collecting gravid Culex mos-quitoes. Mosquito News 43: 496-498

    Google Scholar 

  • Reling D, Taylor RA (1984) A collapsible tow net used for sampling arthropods by airplane. J Econ Entomol 77: 1615-1617

    Google Scholar 

  • Reynolds DR, Smith AD, Mukhopadhyay S, Chowdhury AK, De BK, Nath PS, Mondal SK, Das BK, Mukhopadhyay S (1996) Atmospheric transport of mosquitoes in northeast India. Med Vet Entomol 10: 185-186

    CAS  PubMed  Google Scholar 

  • Riley JR (1979) Radar as an aid to the study of insect flight. In: Amlaner CJ, Macdonald DW (eds) A Handbook on Biotelemetry and Radar Tracking. Pergamon, New York, pp 131-139

    Google Scholar 

  • Riley JR (1992) A millimetric radar to study the flight of small insects. Electr Commun Eng J 4: 43-48

    Google Scholar 

  • Riley JR, Cheng X-N, Zhang X-X, Reynolds DR, Xu G-M, Smith AD, Cheng J-Y, Bao A-D, Zhai B-P (1991) The long-distance migration of Nilaparvata lugens (Stal) (Delphacidae) in China: radar observations of mass return flight in the autumn. Ecol Entomol 16: 471-489

    Google Scholar 

  • Roberts DM (1996) Circadian flight activity of Arabian sandflies (Diptera: Psychdidae) using a vehicle-mounted net. Bull Entomol Res 86: 61-66

    Google Scholar 

  • Roberts D, Kumar S (1994) Using vehicle-mounted nets for studying activity of Arabian sand flies (Diptera: Psychodidae). J Med Entomol 31: 388-393

    CAS  PubMed  Google Scholar 

  • Roberts RH (1970) Color of Malaise trap and the collection of Tabanidae. Mos-quito News 30: 567-571

    Google Scholar 

  • Roberts RH (1976) The comparative efficiency of six trap types for the collection of Tabanidae (Diptera). Mosquito News 36: 530-535

    Google Scholar 

  • Roberts RH (1978) Effect of Malaise trap modifications on collections of Tabanidae. Mosquito News 38: 382-385

    Google Scholar 

  • Rohitha BH, Stevenson BE (1987) An automatic sticky trap for aphids (Hemip-tera: Aphididae) that segregates the catch daily. Bull Entomol Res 77: 67-71

    Google Scholar 

  • Roos T (1957) Studies on upstream migration in adult stream-dwelling insects. I. Rep Inst Freshwater Res Drottningholm 38: 167-193

    Google Scholar 

  • Ryan L, Molyneux DH (1981) Non-setting adhesives for insect traps. Insect Sci-ence and its Application 1: 349-355

    Google Scholar 

  • Schaefer GW (1976) Radar observations of insect flight. In: Rainey C (ed) Insect Flight. Symp R Entomol Soc Lond 7. Blackwell Scientific Publications, Oxford, pp 157-196

    Google Scholar 

  • Schaefer GW, Bent GA, Allsopp K (1985) Radar and opto-electronic measure-ments of the effectiveness of Rothamsted insect survey suction traps. Bull Entomol Res 75: 701-715

    Google Scholar 

  • Schreck CE, Gouck HK, Posey KH (1970) An experimental plexiglas mosquito trap utilizing carbon dioxide. Mosquito News 30: 641-645

    Google Scholar 

  • Service MW (1969) The use of insect suction traps for sampling mosquitoes. Trans R Soc Trop Med Hyg 63: 656-663

    CAS  PubMed  Google Scholar 

  • Service MW (1971a) Flight periodicities and vertical distribution of Aedes can-tans (Mg.), Ae. geniculatus (Ol.), Anopheles plumbeus Steph. and Culex pipiens L. (Dipt., Culicidae) in southern England. Bull Entomol Res 60: 639-651

    Google Scholar 

  • Service MW (1971b) Adult flight activities of some British Culicoides species. J Med Entomol 8: 605-609

    CAS  PubMed  Google Scholar 

  • Service MW (1973a) Observations on the flight activities of Chrysops caecutiens L. Ann Trop Med Parasitol 67: 445-454

    CAS  PubMed  Google Scholar 

  • Service MW (1973b) Flight Activities of Mosquitoes with Emphasis on Host Seeking Behaviour. Proceedings of a Symposium on Biting Fly Control and Environmental Quality, May 1972, Edmonton, Canada. Defence Research Board, Ottawa, No. DR. 217

    Google Scholar 

  • Service MW (1974) Further results of catches of Culicoides and mosquitoes from suction traps. J Med Entomol 11: 471-479

    CAS  PubMed  Google Scholar 

  • Service MW (1980) Effects of wind on the behaviour and distribution of mosqui-toes and blackflies. Int J Biometeorol 24: 347-353

    Google Scholar 

  • Service MW (1984) Evaluation of sticky light traps for sampling mosquito larvae. Entomol Exp Appl 35: 27-32

    Google Scholar 

  • Shimizu Y, Takahashi M, Yabe S (1969) Use of the truck trap for the survey of mosquito population and the physiological age composition. Jap J Sanit Zool 20: 76-80 (In Japanese, English summary)

    Google Scholar 

  • Snoddy EL (1970) Trapping deer flies with colored weather balloons (Diptera: Tabanidae). J Ga Entomol Soc 5: 207-209

    Google Scholar 

  • Snow WE, Pickard E (1957) Correlation of vertical and horizontal flight activity of Mansonia perturbans with reference to marked changes in light intensity (Diptera, Culicidae). Ann Entomol Soc Am 50: 306-311

    Google Scholar 

  • Snow WF (1975) The vertical distribution of flying mosquitoes (Diptera: Culici-dae) in West African savanna. Bull Entomol Res 65: 269-277

    Google Scholar 

  • Snow WF (1976) The direction of flight of mosquitoes (Diptera: Culicidae) near the ground in West African savanna in relation to wind direction, in the pres-ence and absence of bait. Bull Entomol Res 65: 555-562

    Google Scholar 

  • Snow WF (1977) The height and direction of flight of mosquitoes in West African sa-vanna, in relation to wind speed and direction. Bull Entomol Res 67: 271-279

    Google Scholar 

  • Snow WF (1980) Field estimates of the flight speed of some West African mos-quitoes. Ann Trop Med Parasitol 74: 239-242

    CAS  PubMed  Google Scholar 

  • Snow WF (1982) Further observations on the vertical distribution of flying mos-quitoes (Diptera: Culicidae) in West African savanna. Bull Entomol Res 72: 695-708

    Google Scholar 

  • Snow WF, Wilkes TJ (1977) Age composition and vertical distribution of mos-quito populations in The Gambia, West Africa. J Med Entomol 13: 507-513

    CAS  PubMed  Google Scholar 

  • Sommerman KM, Simmet RP (1965) Car-top insect trap with terminal cage in auto. Mosquito News 25: 172-182

    Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological Methods. 3rd ed. Blackwell Science, Oxford

    Google Scholar 

  • Stage HH, Chamberlin JC (1945) Abundance and flight habitats of certain Alas-kan mosquitoes, as determined by means of a rotary-type trap. Mosquito News 5: 8-16

    Google Scholar 

  • Stage HH, Gjullin CM, Yates WW (1952) Mosquitoes of the Northwestern States. U.S. Dept Agric Handb No. 46

    Google Scholar 

  • Steelman CD, Richardson CG, Schaefer RE, Wilson BH (1968) A collapsible truck-boat trap for collecting blood-fed mosquitoes and tabanids. Mosquito News 28: 64-67

    Google Scholar 

  • Strong WB (1987) A new method of adhesive application for sticky insect traps. J Econ Entomol 80: 525-526

    Google Scholar 

  • Taylor LR (1951) An improved suction trap for insects. Ann Appl Biol 38: 582-591

    Google Scholar 

  • Taylor LR (1955) The standardization of air-flow in insect suction traps. (Coleman, W.S.—Appendix. Comments on the measurement of air-flow in the smaller traps, pp 406-408). Ann Appl Biol 43: 390-408

    Google Scholar 

  • Taylor LR (1958) Aphid dispersal and diurnal periodicity. Proc Linn Soc Lond 169: 67-73

    Google Scholar 

  • Taylor LR (1960) The distribution of insects at low levels in the air. J Anim Ecol 29: 45-63

    Google Scholar 

  • Taylor LR (1962a) The absolute efficiency of insect suction traps. Ann Appl Biol 50: 405-421

    Google Scholar 

  • Taylor LR (1962b) The efficiency of cylindrical sticky insect traps and suspended nets. Ann Appl Biol 50: 681-685

    Google Scholar 

  • Taylor LR (1974) Insect migration, flight periodicity and the boundary layer. J Anim Ecol 43: 225-238

    Google Scholar 

  • Taylor LR, Palmer JMP (1972) Aerial sampling. In van Emden HF (ed) Aphid Technology With Special Reference to the Study of Aphids in the Field. Aca-demic Press, London, pp 189-234

    Google Scholar 

  • Tedders WL, Gottwald TR (1986) Evaluation of an insect collecting system and an ultra-low-volume spray system on a remotely piloted vehicle. J Econ Entomol 79: 709-713

    Google Scholar 

  • Townes H (1962) Design for a Malaise trap. Proc Entomol Soc Wash 64: 253-262

    Google Scholar 

  • Tsai TF, Smith GC, Happ CM, Kirk LJ, Jakob WL, Bolin RA, Francy DB, Lampert KJ (1989) Surveillance of St. Louis encephalitis virus vectors in Grand Junction, Colorado, in 1987. J Am Mosq Control Assoc 5: 161-165

    CAS  PubMed  Google Scholar 

  • Vale GA (1974) The response of tsetse flies (Diptera: Glossinidae) to mobile and stationary baits. Bull Entomol Res 64: 545-588

    Google Scholar 

  • Wainhouse D (1980) A portable suction trap for sampling small insects. Bull Entomol Res 70: 491-494

    Google Scholar 

  • Walsh JF (1980) Sticky trap studies on Simulium damnosum s.l. in northern Ghana. Tropenmed Parasitol 31: 479-486

    CAS  PubMed  Google Scholar 

  • Way MJ, Banks CJ (1968) Population studies on the active stages of the black bean aphid, Aphis fabae Scop., on its winter host Euonymus europaeus L. Ann Appl Biol 62: 177-197

    Google Scholar 

  • West AS, Baldwin WF, Gomery J (1971) A Radioisotopic-Sticky Trap- Autoradiographic Technique for Studying the Dispersal of Black-flies. WHO/ONCHO/71.84, 18 pp. (mimeographed)

    Google Scholar 

  • Williams DC, Meisch MV (1983) Collection methods for a blood host study of riceland mosquitoes. Mosquito News 43: 355-356

    Google Scholar 

  • Wilson BH, Tugwell NP, Burns EC (1966) Attraction of tabanids to traps baited with dry ice under field conditions in Louisiana. J Med Entomol 3: 148-149

    Google Scholar 

  • Winternitz FAL, Fischl CF (1957) A simplified integration technique for pipeflow measurement. Water Power 9: 225-234

    Google Scholar 

  • Yoshimoto CM, Gressitt JL (1959) Trapping of air-borne insects on ships in the Pacific (Part II). Proc Hawaii Entomol Soc 17: 150-155

    Google Scholar 

  • Yoshimoto CM, Gressitt JL (1963) Trapping of air-borne insects in the Pacific-Antarctic area, 2. Pacific Insects 5: 873-883

    Google Scholar 

  • Yoshimoto CM, Gressitt JL, Mitchell CJ (1962a) Trapping of air-borne insects in the Pacific-Antarctic area, 1. Pacific Insects 4: 847-858

    Google Scholar 

  • Yoshimoto CM, Gressitt JL, Wolff T (1962b) Air-borne insects from the Galathea expedition. Pacific Insects 4: 269-291

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Sampling Adults with Non-attractant Traps. In: Mosquito Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6666-5_8

Download citation

Publish with us

Policies and ethics