Partitioning and Exchange of Organochlorine Contaminants between Abiotic Compartments in Antarctica

  • Vladimir Bogillo
  • Mariya Bazylevska
Part of the NATO Science for Peace and Security Series book series (NAPSC)

The partition coefficients for OCs at typical temperatures in Antarctica and Southern Ocean are calculated and they are used to estimate the partitioning of the OCs between atmospheric particulates and gas phase, scavenging the OCs from gas phase by snow, atmospheric persistence of the OCs, the direction and strength of air/seawater, air/snow, air/soil, and seawater/sediment fluxes for the OCs in Antarctica. The air/soil and seawater/sediment fluxes of OCs are agreed with “cold condensation” hypothesis. The deep water formation in Weddell and Ross Seas, the shelf sediments and the Antarctic snowpack would be important sinks for the OCs.


Antarctica Southern ocean persistent organic pollutants “cold condensation,” “cold fractionation,” air/seawater air/snow air/soil and seawater/sediment exchange atmospheric persistence of organochlorine contaminants global warming POPs fate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atlas of the Oceans, v. 6. Antarctic (Ministry of Defense, Federation of Russian Navy, St. Petersburg, 2005).Google Scholar
  2. 2.
    F. Wania and D. Mackay, Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions, Ambio 22, 10-18 (1993).Google Scholar
  3. 3.
    V. G. Aver’yanov, Antarctic glacioclimatology (Gidrometeoizdat, Leningrad, 1990).Google Scholar
  4. 4.
    A. Beyer, F. Wania, T. Gouin, D. Mackay, and M. Matthies, Selecting internally consistent physical-chemical properties of organic compounds, Environ. Toxicol Chem. 21, 941-953 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Mackay, W. Y. Shiu, and K. C. Ma, Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, Vols. 1-5 (Lewis Publishers, Boca Raton, FL, 1995).Google Scholar
  6. 6.
    N. Vulykh and V. Shatalov, Investigation of dioxin/furan compositions in emissions and in environmental media. Selection of congeners for modelling (Meteorological Synthesizing Centre - East, Moscow, 2001).Google Scholar
  7. 7.
    Th. E. M. ten Hulscher, L. E. van der Velde, and W. A. Bruggeman, Temperature dependence of Henry’s Law constant for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, Environ. Toxicol Chem. 11, 1595-1603 (1992).CrossRefGoogle Scholar
  8. 8.
    T. Harner and T. F. Bidleman, Measurement of octanol-air partition coefficients for polychlorinated biphenyls, J. Chem. Eng. Data 41, 895-899 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Malanichev, E. Mantseva, V. Shatalov, B. Strukov, and N. Vulykh, Numerical evaluation of the PCBs transport over the Northern Hemisphere, Environ. Pollut. 128, 279-289 (2004).CrossRefGoogle Scholar
  10. 10.
    L. Liu and Q.-X.Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy - entropy compensation, Chem. Rev. 101, 673-695 (2001).CrossRefGoogle Scholar
  11. 11.
    F. Wania, Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic, Environ. Sci. Technol. 40, 569-577 (2006).CrossRefGoogle Scholar
  12. 12.
    C. M. Roth, K.-U. Goss, and R. P. Schwarzenbach, Adsorption of a diverse set of organic vapors on the bulk water surface, J. Colloid Interface Sci. 252, 21-30 (2002).CrossRefGoogle Scholar
  13. 13.
    Y. D. Lei and F. Wania, Is rain or snow amore efficient scavenger of organic chemicals? Atmos. Environ. 38, 3557-3571 (2004).CrossRefGoogle Scholar
  14. 14.
    T. H. Nguyen, K.-U. Goss, and W. P. Ball, Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments, Environ. Sci. Technol. 39, 913-924 (2005).CrossRefGoogle Scholar
  15. 15.
    J. A. Platts, D. Butina, M. H. Abraham, and A. Hersey, Estimation of molecular linear free energy relation descriptors using a group contribution approach, J. Chem. Inf. Comput. Sci. 39, 835-845 (1999).Google Scholar
  16. 16.
    F. Wania and G. L. Daly, Estimating the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs, Atmos. Environ. 36, 5581-5593 (2002).CrossRefGoogle Scholar
  17. 17.
    R. Lohmann, W. A. Ockenden, J. Shears, and K. C. Jones, Atmospheric distribution of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs), and non-ortho biphenyls (PCBs) along a North - South Atlantic transect, Environ. Sci. Technol. 35(20), 4046-4053 (2001).CrossRefGoogle Scholar
  18. 18.
    K. M. Hansen, C. J. Halsall, and J. H. Christensen, A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snowpack, Environ. Sci. Technol. 40, 2644-2652 (2006).CrossRefGoogle Scholar
  19. 19.
    E. C. S. Kwok, R. Atkinson, and J. Arey, Rate constants for the gas phase reactions of the OH radicals with dichlorobiphenyls, 1-chlorodibenzo-p-dioxin, 1,2- dimethoxybenzene and diphenyl ether: estimation of OH radical rate constants for PCBs, PCDDs, and PCDFs, Environ. Sci. Technol. 29, 1591-1598 (1995).CrossRefGoogle Scholar
  20. 20.
    W. W. Brubaker Jr. and R. A. Hites, OH kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans, J. Phys. Chem. 102, 915-921 (1998).Google Scholar
  21. 21.
    Hazardous substances data bank (HSDB), ChemKnowledge plus Ariel Global View, Vol. 48 (Micromedex Thompson SR, Englewood, 2001).Google Scholar
  22. 22.
    A. P. Altshuller, in: Advances in Environmental Science and Technology, edited by J. N. Pitts, L. Metcalf, and D. Grosjean (Wiley, New York, Vol. 10, 1980), pp. 181-219.Google Scholar
  23. 23.
    A. Beyer, F. Wania, T. Gouin, D. Mackay, and M. Matthies, Temperature dependence of the characteristic travel distance, Environ. Sci. Technol. 37(4), 767-771 (2003).CrossRefGoogle Scholar
  24. 24.
    Handbook of environmental degradation rates, edited by P. H. Howard, R. S. Boethling, W. F. Jarvis, W. M. Meylan, and E. M. Mihalenko (Lewis Publishers, Chelsea, MI, 1991).Google Scholar
  25. 25.
    C. J. Halsall, A. J. Sweetman, L. A. Barrie, and K. C. Jones, Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic, Atmos. Environ. 35, 255-267 (2001).CrossRefGoogle Scholar
  26. 26.
    H. Iwata, S. Tanabe, N. Sakal, and R. Tatsukawa, Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate, Environ. Sci. Technol. 27, 1080-1098 (1993).CrossRefGoogle Scholar
  27. 27.
    S. Lakaschus, K. Weber, F. Wania, R. Brun, and O. Schrems, The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica, Environ. Sci. Technol. 36(2), 138-145 (2002).CrossRefGoogle Scholar
  28. 28.
    R. M. Dickhut, A. Cincinelli, M. Cochran, and H. W. Ducklow, Atmospheric concentrations and air-water flux of organochlorine pesticides along the Western Antarctic Peninsula, Environ. Sci. Technol. 39, 465-470 (2005).CrossRefGoogle Scholar
  29. 29.
    V. Bogillo and M. Bazylevska, Variations of organochlorine contaminants in Antarctica, this issue.Google Scholar
  30. 30.
    R. Lohmann, E. Jurado, M. E. Q. Pilson, and J. Dachs, Oceanic deep water formation as a sink of persistent organic pollutants, Geophys. Res. Lett.33, doi: 10.1029/2006GL025953 (2006).Google Scholar
  31. 31.
    F. Domine, R. Salvatori, L. Legagneux, R. Salzano, M. Fily, and R. Casacchia, Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow, Cold Regions Sci. Technol. 46, 60-68 (2006).CrossRefGoogle Scholar
  32. 32.
    R. P. Schwarzenbach, P. M. Gshwend, and D. M. Imboden, Environmental organic chemistry (Wiley, New York, 2003).Google Scholar
  33. 33.
    S. Tanabe, H. Hidaka, and R. Tatsukawa, PCBs and chlorinated hydrocarbon pesticides in antarctic atmosphere and hydrosphere, Chemosphere 12(2), 277-288 (1983).CrossRefGoogle Scholar
  34. 34.
    S. Lakaschus and O. Schrems, Air- snow/firn transfer of HCHs at Neumayer station/Antarctica, Abstracts of SETAC-2002.Google Scholar
  35. 35.
    T. Gouin, D. Mackay, K. C. Jones, T. Harner, and S. N. Meijer, Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants, Environ. Pollut. 128, 139-148 (2004).CrossRefGoogle Scholar
  36. 36.
    T. G. Negoita, A. Covaci, A. Gheorghe, and P. Schepens, Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast, J. Environ. Monit. 5, 281-286 (2003).CrossRefGoogle Scholar
  37. 37.
    T. Harner, T. F. Bidleman, and D. Mackay, Soil-air exchange model of persistent pesticides in the United States Cotton Belt, Environ. Toxicol. Chem. 20, 1612-1621 (2001).CrossRefGoogle Scholar
  38. 38.
    K. U. Goss, J. Buschmann, and R. P. Schwarzenbach, Adsorption of organic vapors to air-dry soils: Model predictions and experimental validation, Environ. Sci. Technol. 38, 3667-3673 (2004).CrossRefGoogle Scholar
  39. 39.
    R. C. Montone, S. Taniguchi, and R. R. Weber, Polychlorinated biphenyls in marine sediments of Admiralty Bay, King George Island, Antarctica, Marine Pollut. Bull. 42(8), 611-614 (2001).CrossRefGoogle Scholar
  40. 40.
    R.C. Montone, S. Tanihuchi, J. Sericano, R. R. Weber, and W. H. Lara, Determination of polychlorinated biphenyls on Antarctic Macroalgae Desmarestia sp., Sci. Total Environ. 277, 181-186 (2001).CrossRefGoogle Scholar
  41. 41.
    S. B. Bondar, L. G. Orlova, and V. P. Usenko, Ingredients of chemical pollution in the ecosystem shallow waters of the Argentine Archipelago (area of Ukrainian Antarctic station“Academician Vernadsky”), Bull. Ukrainian Antarctic Centre3,192-208 (2000).Google Scholar
  42. 42.
    V. E. Timofeev, Climatic indexes of Southern Hemisphere and their relation to tropospheric circulation, Ukrainian Antarct. J. 3, 85-92 (2005).Google Scholar
  43. 43.
    D. G. Vaughan, Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level, Arctic, Antarct. Alpine Res. 38(1), 147-152 (2006).CrossRefGoogle Scholar
  44. 44.
    R. W. Risebrough, W. I. Walker, T. T. Shmidt, B. W. Delappe, and C. W. Connors, Transfer of chlorinated biphenyls to Antarctica, Nature 364, 738-739 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Vladimir Bogillo
    • 1
  • Mariya Bazylevska
    • 1
  1. 1.Department of Antarctic Geology and GeoecologyInstitute of Geological Sciences, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations