Skip to main content

Inhomogeneous Ionosphere

  • Chapter
  • 707 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 353))

This chapter deals with horizontally inhomogeneous ionosphere. First, we will show that the quasi-DC (direct current) approximation is appropriate for the description of ionospheric currents caused by FMS and Alfvén waves. Next, we will discuss how this approximation can be applied to an ionosphere containing irregularities of different scales. Then we will show several examples of global distributions of magnetic variations produced either by the fieldaligned currents of an incident Alfvén wave or by the electric field of an FMS-wave.

We have shown that FMS-wave is almost insensitive to the ionospheric conductivity. The transition region between the dayside and nightside ionosphere is one example of a strong horizontal gradient of electron concentration, it is therefore also an example of a strong horizontal anomaly of the conductivity. We have also shown that on the contrary, the dependency of transmission on ionospheric conductivity becomes an important factor for Alfvén waves. The behavior of the ground magnetic field at sunrise and sunset is then discussed and its dependence on the initial MHD-mode is examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alperovich, L., B. Fidel, and O. Saka, A determination of the hydromagnetic waves polarization from their perturbations on the terminator, Ann. Geophys., 14,647,1996.

    Article  ADS  Google Scholar 

  2. Alperovich, L., B. Fidel, and O. Saka, Determination of Magnetospheric wave polarization using ground-based sunrise geomagnetic observations, J. Geomagn. Geoelectr., 48, 79, 1996.

    Google Scholar 

  3. Alperovich, L., B. Fidel, and O. Saka, Ground-based diagnostics of the magnetospheric MHD-waves polarization using sunrise geomagnetic observations, J. Geomag. Geoelectr., 48, 79, Japan, 1995.

    Google Scholar 

  4. Glassmeier, K. H., Reflection of MHD-waves in the Pc4-5 period range at ionospheres with non-uniform conductivity distributions, Geophys. Res. Lett., 10,678,1983.

    Article  ADS  Google Scholar 

  5. Glassmeier, K. H., On the influence of ionospheres with nonuniform conductivity distribution on hydromagnetic waves, Geophys. J., 54, 125, 1984.

    Google Scholar 

  6. Glassmeir, K. H., Ground-based observations of field-aligned currents in the auroral zone: Methods and results, Ann. Geophys., 5, 115,1987.

    ADS  Google Scholar 

  7. Glassmeier, K. H., M. Honisch, and J. Untiedt, Ground-based and satellite observations of travelling magnetospheric convection twin-vortices, J. Geophys. Res., 94, 2520, 1989.

    Article  ADS  Google Scholar 

  8. Glassmeir, K. H., Traveling magnetospheric convection twin-vortices: Observations and theory, Ann. Geophys., 10, 547 1992.

    ADS  Google Scholar 

  9. Gurevich, A. V., A. L. Krylov, and E. E. Tsedilina, Electric fields in the Earth’s magnetosphere and ionosphere, Space Sci. Rev., 19, 59, 1976.

    Article  ADS  Google Scholar 

  10. Itonaga, M. and T. Kitamura, Effect of non-uniform ionospheric conductivity distributions on P c3 − 5 magnetic pulsations - Alfvén wave incidence, J. Geomag. Geoelectr., 40, 1413, 1988.

    ADS  Google Scholar 

  11. Kamide, Y., A. D. Richmond, and S. Matsushita, Estimation of ionospheric electric fields, ionospheric currents and field-aligned currents from ground magnetic records, J. Geophys. Res., 86, 801, 1981.

    Article  ADS  Google Scholar 

  12. Saka, O., T.-J. Ijima, and T. Kitamura, Ionospheric control of polarization of low-latitude geomagnetic micropulsations, J. Atmos. Terr. Phys., 42, 517, 1980.

    Article  ADS  Google Scholar 

  13. Saka, O., M. Itonaga, and T. Kitamura., Ionospheric control of polarization of low-latitude geomagnetic micropulsations at sunrise, J. Atmos. Terr. Phys., 44, 703,1982.

    Article  ADS  Google Scholar 

  14. Saka, O. and L. Alperovich, Sunrise effect on dayside pulsations at the dip equator, J. Geophys. Res., 98, 13779, 1993.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Inhomogeneous Ionosphere. In: Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Astrophysics and Space Science Library, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6637-5_9

Download citation

Publish with us

Policies and ethics