Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 353))

  • 701 Accesses

Up to this point, we have treated the ionosphere as a thin anisotropic layer. As indicated in Chapter 1, to obtain the integral conductivity expression, we use the three-fluid hydrodynamics model for electron, ion and neutral gases and derive expressions for their specific conductivities. Due to the high conductivity along the external magnetic field B0, the longitudinal electric field vanishes and the transversal electric component is necessarily constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Alfvén, H. and C. G. Falthammer, Cosmical electrodynamics, 2nd edn., Oxford, 1963.

    Google Scholar 

  2. Alperovich L. S. and E. N. Fedorov, Generation of low-frequency electromagnetic oscillations by the field of a powerful radio wave in the ionosphere, Radiophysics and Quantum Electronics, 24, 190, 1981.

    Article  ADS  Google Scholar 

  3. Alperovich, L. S., N. I. Gershenson, and A. L. Krylov, The fluctuations of the quasistationary electric and magnetic fields as a result of the stochastic irregularities of the ionospheric conductivity, Geom. Aeron., 26, 928-932, 1986.

    Google Scholar 

  4. Alperovich, L., N. I. Gershenson, and A. L. Krylov, Connection between spatial and temporal spectrums of the ionospheric wave disturbances, Geom. Aeron., 26,406-410, 1986.

    Google Scholar 

  5. Alperovich, L., and I. Chaikovsky, On effective conductivity of the ionosphere with random irregularities, Ann. Geophys., 13, 339, 1995.

    Article  ADS  Google Scholar 

  6. Chaikovsky, I., and L. Alperovich, A method for determining microinhomogeneities in semiconductors, J. Appl. Phys., American Inst. of Phys., 83, 5277, 1998.

    ADS  Google Scholar 

  7. Alperovich, L., S. Grachev, Yu. Gurvich, L. Litvak-Gorskaya, A. Melnikov, and I. Chaikovsky, An optical method for simulating of non-uniform systems, JETP Lett., 65, 224, 1997.

    Article  ADS  Google Scholar 

  8. Alperovich, L. I. Chaikovsky, On the effective conductivity of the magnetized bounded partially ionised plasma with random irregularities, Plasma Phys. Control. Fusion, 41, 1071-1090, 1999.

    Article  ADS  Google Scholar 

  9. Balagurov, B. Ya., Theory of the galvanomagnetic properties of two-dimensional two-component systems, Sov. Phys. JETP, 108, 2202, 1995.

    Google Scholar 

  10. Brugemann, D.A.Q., Ann. Phys, Lpz., 24, 636, 1935.

    Article  ADS  Google Scholar 

  11. Dreizin, Yu. A., and A. M. Dichne, Anomalous conductivity of inhomogeneous media in strong magnetic field, Sov. Phys. JETP, 36, 127-136, 1973.

    ADS  Google Scholar 

  12. Dychne, A. M., Sov. Phys. JETP, 59, 641, 1970.

    Google Scholar 

  13. Dychne, A. M. and I. M. Rusin, Phys. Rev., B, 50, 2369, 1994.

    Article  ADS  Google Scholar 

  14. Galperin, Yu. M., and B. D. Laichtman, Effect of microinhomogeneities on kinetic phenomena in high-mobility semiconductors, Sov. Phys. Sol. State, 13, 1760,1972.

    Google Scholar 

  15. Gershman, B. N., Dynamics of the Ionospheric Plasma (in Russian), Nauka, Moscow, 1974.

    Google Scholar 

  16. Gurevich, A. V., Nonlinear Plasma Phenomena in the Ionosphere, SpringerVerlag, New York-Heidelberg-Berlin, 1978.

    Google Scholar 

  17. Herring, C., Effect of random inhomogeneities on electrical and galvanomagnetic measurements, J. Appl. Phys., 31, 107, 1961.

    Google Scholar 

  18. Kirkpatric, S., Classical transport in disordered media: Scaling and effectivemedium theories, Phys. Rev. Lett., 27,1722,1971.

    Article  ADS  Google Scholar 

  19. Kvyatkovskiy, O. E., Effective conductivity of an inhomogeneous medium in a strong magnetic field, Sov. Phys. JETP, 58, 120, 1983.

    Google Scholar 

  20. Landauer, R., The electrical resistance of binary metallic mixtures, J. Appl. Phys., 23, 779, 1952.

    Article  ADS  Google Scholar 

  21. Landau, L. D., and E. M. Lifshitz, Electrodynamics of continuous media, Pergamon Press, Oxford, 1960.

    MATH  Google Scholar 

  22. Last, B. J., and Thouless D. J., Percolation theory and electrical conductivity, Phys. Rev. Lett., 27, 1719, 1971.

    Article  ADS  Google Scholar 

  23. Shalimov, S., C., Haldoupis and K. Schlegel, Large polarization electric fields associated with midlatitude sporadic E, J. Geophys. Res., 103, 11617, 1998.

    Article  ADS  Google Scholar 

  24. Watson, B. P. and P. I. Leath, Conductivity in the two-dimensional-site percolation problem, Phys. Rev. B., 9, 4893, 1974.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Effective Conductivity of a Cloudy Ionosphere. In: Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Astrophysics and Space Science Library, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6637-5_10

Download citation

Publish with us

Policies and ethics