Advertisement

Applications

Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

This chapter focuses on applications of FFT/IFFT in a number of diverse fields. In view of the extensive nature of their applications they are intentionally described in a conceptual form. The reader is directed to the references wherein the applications are described in detail along with the theoretical background, examples, limitations, etc. The overall objective is to expose the reader to the limitless applications of DFT in the general areas of signal/image processing.

Keywords

Discrete Fourier Transform Filter Bank Watermark Image Power Density Spectrum Audio Watermark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. B6.
    A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989)MATHGoogle Scholar
  2. B12.
    M.F. Cátedra et al., The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics. CG = Conjugate Gradient (Artech, Norwood, MA, 1994)Google Scholar
  3. B23.
    K.R. Rao, P.C. Yip (eds.), The Transform and Data Compression Handbook (CRC Press, Boca Raton, FL, 2001)MATHGoogle Scholar
  4. B27.
    S.J. Leon, Linear Algebra with Applications, 6th edn. (Prentice-Hall, Upper Saddle River, NJ, 2006)Google Scholar
  5. B40.
    L.C. Ludeman, Random Processes: Filtering, Estimation and Detection (Wiley, Hoboken, NJ, 2003)Google Scholar
  6. B41.
    W.K. Pratt, Digital Image Processing, IVth edn. (Wiley, New York, 2007)CrossRefGoogle Scholar
  7. IN5.
    S.D. Stearns, R.A. David, Signal Processing Algorithms (Englewood Cliffs, NJ, Prentice-Hall, 1988). Chapter 10 – Decimation and Interpolation Routines. Chapter 9 – Convolution and correlation using FFTMATHGoogle Scholar
  8. D1.
    J.P. Princen, A.B. Bradley, Analysis/synthesis filter bank design based on time domain aliasing cancellation. IEEE Trans. ASSP 34, 1153–1161 (Oct. 1986)CrossRefGoogle Scholar
  9. D2.
    J.P. Princen, A.W. Johnson, A.B. Bradley, Subband/transform coding using filter bank designs based on time domain aliasing cancellation. IEEE ICASSP April, 2161–2164 (1987)Google Scholar
  10. D3.
    J.D. Johnston, Transform coding of audio signals using perceptual noise criteria. IEEE JSAC 6, 314–323 (Feb. 1988)Google Scholar
  11. D4.
    J.D. Johnston, Estimation of perceptual entropy using noise masking criteria, in IEEE ICASSP, vol. 5, New York, Apr. 1988, pp. 2524–2527Google Scholar
  12. D5.
    J.H. Chung, R.W. Schafer, A 4.8 kbps homomorphic vocoder using analysis-by-synthesis excitation analysis, in IEEE ICASSP, vol. 1, Glasgow, Scotland, May 1989, pp. 144–147Google Scholar
  13. D6.
    J.D. Johnston, Perceptual transform coding of wideband stereo signals, in IEEE ICASSP, vol. 3, Glasgow, Scotland, May 1989, pp. 1993–1996Google Scholar
  14. D7.
    Y.-F. Dehery, A digital audio broadcasting system for mobile reception, in ITU-COM 89, CCETT of France, Geneva, Switzerland, Oct. 1989, pp. 35–57Google Scholar
  15. D8.
    ISO/IEC JTC1/SC2/WG8 MPEG Document 89/129 proposal package description, 1989Google Scholar
  16. D9.
    “ASPEC”, AT&T Bell Labs, Deutsche Thomson Brandt and Fraunhofer Gesellschaft – FhG AIS, ISO/IEC JTC1/SC2/WG8 MPEG 89/205Google Scholar
  17. D10.
    K. Brandenburg et al., Transform coding of high quality digital audio at low bit rates-algorithms and implementation, in IEEE ICC 90, vol. 3, Atlanta, GA, Apr. 1990, pp. 932–936Google Scholar
  18. D11.
    G. Stoll, Y.-F. Dehery, High quality audio bit-rate reduction system family for different applications, in IEEE ICC, vol. 3, Atlanta, GA, Apr. 1990, pp. 937–941Google Scholar
  19. D12.
    J.H. Chung, R.W. Schafer, Excitation modeling in a homomorphic vocoder, in IEEE ICASSP, vol. 1, Albuquerque, NM, Apr. 1990, pp. 25–28Google Scholar
  20. D13.
    G.A. Davidson, L.D. Fielder, M. Artill, Low-complexity transform coder for satellite link applications, in AES 89th Convention, Los Angeles, CA, 21–25 Sept. 1990, http://www.aes.org/
  21. D14.
    T.D. Lookabaugh, M.G. Perkins, Application of the Princen-Bradley filter bank to speech and image compression. IEEE Trans. ASSP 38, 1914–1926 (Nov. 1990)CrossRefGoogle Scholar
  22. D15.
    H.G. Musmann, The ISO audio coding standard, in IEEE GLOBECOM, vol. 1, San Diego, CA, Dec. 1990, pp. 511–517Google Scholar
  23. D16.
    Y. Mahieux, J.P. Petit, Transform coding of audio signals at 64 kbit/s, in IEEE GLOBECOM, vol. 1, San Diego, CA, Dec. 1990, pp. 518–522Google Scholar
  24. D17.
    K. Brandenburg et al., ASPEC: Adaptive spectral perceptual entropy coding of high quality music signals, in 90th AES Convention, Preprint 3011 (A-4), Paris, France, 19–22 Feb. 1991Google Scholar
  25. D18.
    P. Duhamel, Y. Mahieux, J.P. Petit, A fast algorithm for the implementation of filter banks based on ‘time domain aliasing cancellation’. IEEE ICASSP 3, 2209–2212 (Apr. 1991)Google Scholar
  26. D19.
    L.D. Fielder, G.A. Davidson, AC-2: A family of low complexity transform based music coders, in AES 10th Int’l Conference, London, England, 7–9 Sept. 1991, pp. 57–69Google Scholar
  27. D20.
    M. Iwadare et al., A 128 kb/s Hi-Fi audio CODEC based on adaptive transform coding with adaptive block size MDCT. IEEE JSAC 10, 138–144 (Jan. 1992)Google Scholar
  28. D21.
    G.A. Davidson, W. Anderson, A. Lovrich, A low-cost adaptive transform decoder implementation for high-quality audio. IEEE ICASSP 2, 193–196 (Mar. 1992)Google Scholar
  29. D22.
    K. Brandenburg et al., The ISO/MPEG audio codec: A generic standard for coding of high quality digital audio, in 92th AES Convention, Preprint 3336, Vienna, Austria, Mar. 1992, http://www.aes.org/
  30. D23.
    L.D. Fielder, G.A. Davidson, Low bit rate transform coder, decoder and encoder/decoder for high quality audio, U.S. Patent 5,142,656, 25 Aug. 1992Google Scholar
  31. D24.
    A.G. Elder, S.G. Turner, A real-time PC based implementation of AC-2 digital audio compression, in AES 95th Convention, Preprint 3773, New York, 7–10 Oct 1993Google Scholar
  32. D26.
    D. Pan, An overview of the MPEG/Audio compression algorithm, in IS&T/SPIE Symposium on Electronic Imaging: Science and Technology, vol. 2187, San Jose, CA, Feb. 1994, pp. 260–273Google Scholar
  33. D30.
    A.S. Spanias, Speech coding: A tutorial review. Proc. IEEE 82, 1541–1582 (Oct. 1994)CrossRefGoogle Scholar
  34. D31.
    M. Bosi, S.E. Forshay, High quality audio coding for HDTV: An overview of AC-3, in 7th Int’l Workshop on HDTV, Torino, Italy, Oct. 1994Google Scholar
  35. D32.
    D. Sevic, M. Popovic, A new efficient implementation of the oddly stacked Princen-Bradley filter bank. IEEE SP Lett. 1, 166–168 (Nov 1994)CrossRefGoogle Scholar
  36. D33.
    P. Noll, Digital audio coding for visual communications. Proc. IEEE 83, 925–943 (June 1995)CrossRefGoogle Scholar
  37. D35.
    M. Bosi et al., ISO/IEC MPEG-2 advanced audio coding, in AES 101st Convention, Los Angeles, CA, 8–11 Nov. 1996. Also appeared in J. Audio Engineering Soc., vol. 45, pp. 789–814, Oct. 1997Google Scholar
  38. D37.
    K.R. Rao, J.J. Hwang, Techniques and Standards for Image, Video and Audio Coding (Prentice-Hall, Upper Saddle River, NJ, 1996)Google Scholar
  39. D38.
    K. Brandenburg, M. Bosi, Overview of MPEG audio: Current and future standards for low bit-rate audio coding. J Audio Eng Soc 45, 4–21 (Jan./Feb. 1997)Google Scholar
  40. D39.
    MPEG-2 Advanced Audio Coding (AAC), ISO/IEC JTC1/SC29/WG 11, Doc. N1650, Apr. 1997, MPEG-2 IS 13818-7. Pyschoacoustic model for NBC (Nonbackward Compatible) – AAC (Advanced Audio Coder) audio coder, IS for MPEG-2. Also adopted by MPEG-4 in T/F coder, http://www.mpeg.org/
  41. D40.
    S. Shlien, The modulated lapped transform, its time-varying forms, and its applications to audio coding standards. IEEE Trans. Speech Audio Process. 5, 359–366 (July 1997)CrossRefGoogle Scholar
  42. D43.
    MPEG-4 WD ISO/IEC 14496-3, V4.0/10/22/1997 (FFT in ‘CELP’ coder)Google Scholar
  43. D45.
    C.-M. Liu, W.-C. Lee, A unified fast algorithm for cosine modulated filter banks in current audio coding standards. J. Audio Eng. Soc. 47, 1061–1075 (Dec. 1999)Google Scholar
  44. D46.
    Method for objective measurements of perceived audio quality. Recommendation ITU-R BS.1387-1, 1998–2001Google Scholar
  45. D47.
    R. Geiger et al., Audio coding based on integer transforms, in AES 111th Convention, New York, 21–24 Sept. 2001, pp. 1–9Google Scholar
  46. D48.
    S.-W. Lee, Improved algorithm for efficient computation of the forward and backward MDCT in MPEG audio coder. IEEE Trans. Circ. Syst. II Analog Digital Signal Process. 48, 990–994 (Oct. 2001)CrossRefGoogle Scholar
  47. D49.
    V. Britanak, K.R. Rao, A new fast algorithm for the unified forward and inverse MDCT/MDST computation. Signal Process. 82, 433–459 (Mar. 2002)MATHCrossRefGoogle Scholar
  48. D50.
    M. Bosi, R.E. Goldberg, Introduction to Digital Audio Coding and Standards (Kluwer, Norwell, MA, 2003)CrossRefGoogle Scholar
  49. D51.
    G.A. Davidson et al., ATSC video and audio coding. Proc. IEEE 94, 60–76 (Jan. 2006)CrossRefGoogle Scholar
  50. D52.
    J.M. Boyce, The U.S. digital television broadcasting transition. IEEE SP Mag. 26, 102–110 (May 2009)CrossRefGoogle Scholar
  51. D53.
    I.Y. Choi et al., Objective measurement of perceived auditory quality in multichannel audio compression coding systems. J. Audio Eng. Soc. 56, 3–17 (Jan. 2008)Google Scholar
  52. IP2.
    E. De Castro, C. Morandi, Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. PAMI 9, 700–703 (Sept. 1987)CrossRefGoogle Scholar
  53. IP3.
    W.M. Lawton, Multidimensional chirp algorithms for computing Fourier transforms. IEEE Trans. IP 1, 429–431 (July 1992)Google Scholar
  54. IP9.
    W. Philips, On computing the FFT of digital images in quadtree format. IEEE Trans. SP 47, 2059–2060 (July 1999)CrossRefGoogle Scholar
  55. IP10.
    R.W. Cox, R. Tong, Two- and three-dimensional image rotation using the FFT. IEEE Trans. IP 8, 1297–1299 (Sept. 1999)MathSciNetMATHGoogle Scholar
  56. IP16.
    K. Ito et al., Fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. E87–A, 682–691 (Mar. 2004)Google Scholar
  57. IP17.
    O. Urhan, M.K. Güllü, S. Ertürk, Modified phase-correlation based robust hard-cut detection with application to archive film. IEEE Trans. CSVT 16, 753–770 (June 2006)Google Scholar
  58. IP19.
    Ibid., 3rd edn. (Prentice-Hall, Upper Saddle River, NJ, 2007)Google Scholar
  59. IP20.
    P.C. Cosman, Homework 4 and its solution on registration for digital image processing lecture, 2008, available: http://code.ucsd.edu/∼pcosman/
  60. IP27.
    JPEG Software, The Independent JPEG Group, Mar. 1998, available: http://www.ijg.org/
  61. IP28.
    M. Ghanbari, Standard Codecs: Image Compression to Advanced Video Coding (IEE, Hertfordshire, UK, 2003)Google Scholar
  62. IP29.
    S. Kumar et al., Error resiliency schemes in H.264/AVC standard, J. Visual Commun. Image Represent. (JVCIR) (special issue on H.264/AVC), 17, 425–450 (Apr. 2006)Google Scholar
  63. IP34.
    K. Sayood, Introduction to Data Compression, 3rd edn. (Morgan Kaufmann, San Francisco, CA, 2006)Google Scholar
  64. FR3.
    M. Ramkumar, G.V. Anand, An FFT-based technique for fast fractal image compression. Signal Process. 63, 263–268 (Dec. 1997)MATHCrossRefGoogle Scholar
  65. FR6.
    H. Hartenstein, D. Saupe, Lossless acceleration of fractal image encoding via the fast Fourier transform. Signal Process. Image Commun. 16, 383–394 (Nov. 2000)CrossRefGoogle Scholar
  66. E1.
    W. Bender et al., Techniques for data hiding. IBM Syst. J. 35(3/4), 313–335 (1996)CrossRefGoogle Scholar
  67. E2.
    J.J.K.Ơ. Ruanaidh, W.J. Dowling, F.M. Boland, Phase watermarking of digital images, in Proceedings of the ICIP’96, vol. 3, Lausanne, Switzerland, Sept. 1996, pp. 239–242Google Scholar
  68. E4.
    J.J.K.Ơ. Ruanaidh, T. Pun, Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Process (Elsevier) 66, 303–317 (May 1998)MATHGoogle Scholar
  69. E8.
    V. Solachidis, I. Pitas, Self-similar ring shaped watermark embedding in 2D- DFT domain, in EUSIPCO 2000, Tampere, Finland, Sept. 2000, available: http://www.eurasip.org
  70. E14.
    M.D. Swanson et al., Robust audio watermarking using perceptual masking. Signal Process. 66, 337–355 (May 1998) (Special Issue on Watermarking)MATHCrossRefGoogle Scholar
  71. E15.
    B. Ji, F. Yan, D. Zhang, A robust audio watermarking scheme using wavelet modulation. IEICE Trans. Fundam. 86, 3303–3305 (Dec. 2003)Google Scholar
  72. F11.
    M. Boucheret et al., Fast convolution filter banks for satellite payloads with on-board processing. IEEE J. Sel. Areas Commun. 17, 238–248 (Feb. 1999)CrossRefGoogle Scholar
  73. F24.
    E.J. Candès, D.L. Donoho, L. Ying, Fast discrete curvelet transform, SIAM J. Multiscale Model. Simul. 5, 861–899 (Sept. 2006). (The software CurveLab is available at http://www.curvelet.org )
  74. F25.
    Y. Rakvongthai, Hidden Markov tree modeling of the uniform discrete curvelet transform for image denoising. EE5359 Project (UT–Arlington, TX, Summer 2008), http://www-ee.uta.edu/dip/ click on courses
  75. F26.
    Y. Rakvongthai, S. Oraintara, Statistics and dependency analysis of the uniform discrete curvelet coefficients and hidden Markov tree modeling, in IEEE ISCAS, Taipei, Taiwan, May 2009, pp. 525–528Google Scholar
  76. F28.
    E. Viscito, J.P. Allebach, The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices. IEEE Trans. CAS 38, 29–41 (Jan. 1991)CrossRefGoogle Scholar
  77. F29.
    R.H. Bamberger, M.J.T. Smith, A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. SP 40, 882–893 (Apr. 1992)CrossRefGoogle Scholar
  78. F30.
    G. Strang, T. Nguyen, Wavelets and Filter Banks, 2nd edn. (Wellesley-Cambridge Press, Wellesley, MA, 1997)Google Scholar
  79. F31.
    S.-I. Park, M.J.T. Smith, R.M. Mersereau, Improved structures of maximally decimated directional filter banks for spatial image analysis. IEEE Trans. IP 13, 1424–1431 (Nov. 2004)Google Scholar
  80. F32.
    Y. Tanaka, M. Ikehara, T.Q. Nguyen, Multiresolution image representation using combined 2-D and 1-D directional filter banks. IEEE Trans. IP 18, 269–280 (Feb. 2009)MathSciNetGoogle Scholar
  81. F33.
    J. Wisinger, R. Mahapatra, FPGA based image processing with the curvelet transform. Technical Report # TR-CS-2003-01-0, Department of Computer Science, Texas A&M University, College Station, TXGoogle Scholar
  82. F34.
    M.N. Do, M. Vetterli, Orthonormal finite ridgelet transform for image compression. IEEE ICIP, vol. 2, Vancouver, Canada, Sept. 2000, pp. 367–370Google Scholar
  83. F35.
    J.L. Starck, E.J. Candès, D.L. Donoho, The curvelet transform for image denoising. IEEE Trans. IP 11, 670–684 (June 2002)Google Scholar
  84. F36.
    M.N. Do, M. Vetterli, The finite ridgelet transform for image representation. IEEE Trans. IP 12, 16–28 (Jan. 2003)MathSciNetGoogle Scholar
  85. F37.
    B. Eriksson, The very fast curvelet transform, ECE734 Project, University of Wisconsin (UW), Madison, WI, 2006Google Scholar
  86. F38.
    T.T. Nguyen, H. Chauris, The uniform discrete curvelet transform, IEEE Trans. SP, Oct. 2009 (see demo code). (Under review)Google Scholar
  87. C15.
    O. Edfors et al., Analysis of DFT-based channel estimators for OFDM, in Wireless Personal Communications, vol. 12 (Netherlands: Springer, Jan. 2000), pp. 55−70Google Scholar
  88. C16.
    M.-L. Ku, C.-C. Huang, A derivation on the equivalence between Newton’s method and DF DFT-based method for channel estimation in OFDM systems. IEEE Trans. Wireless Commun. 7, 3982–3987 (Oct. 2008)CrossRefGoogle Scholar
  89. O1.
    S.B. Weinstein, P.M. Ebert, Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans. Commun. Technol. 19, 628–634 (OCt. 1971)CrossRefGoogle Scholar
  90. O2.
    W.Y. Zou, W. Yiyan, COFDM: An overview. IEEE Trans. Broadcast. 41, 1–8 (Mar. 1995)CrossRefGoogle Scholar
  91. O5.
    P. Combelles et al., A receiver architecture conforming to the OFDM based digital video broadcasting standard for terrestrial transmission (DVB-T), IEEE ICC, vol. 2, Atlanta, GA, June 1998, pp. 780–785Google Scholar
  92. O7.
    P.M. Shankar, Introduction to Wireless Systems (Wiley, New York, 2002)Google Scholar
  93. O11.
    M. Farshchian, S. Cho, W.A. Pearlman, Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM, in SPIE and IS&T, VCIP, vol. 5308, San Jose, CA, Jan. 2004, pp. 636–646Google Scholar
  94. O18.
    R.M. Jiang, An area-efficient FFT architecture for OFDM digital video broadcasting. IEEE Trans. CE 53, 1322–1326 (Nov. 2007)Google Scholar
  95. G2.
    M. Borgerding, Turning overlap-save into a multiband mixing, downsampling filter bank. IEEE SP Mag. 23, 158–161 (Mar. 2006)CrossRefGoogle Scholar
  96. G5.
    N. Ahmed, K.R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer, New York, 1975)MATHCrossRefGoogle Scholar
  97. G11.
    O.K. Ersoy, A comparative review of real and complex Fourier-related transforms. Proc. IEEE 82, 429–447 (Mar. 1994)CrossRefGoogle Scholar
  98. G12.
    H.C. Andrews, K.L. Caspari, A generalized technique for spectral analysis. IEEE Trans. Comput. 19, 16–25 (Jan. 1970)MATHCrossRefGoogle Scholar
  99. G13.
    H.C. Andrews, Computer Techniques in Image Processing (Academic Press, New York, 1970)Google Scholar
  100. G14.
    H.C. Andrews, J. Kane, Kronecker matrices, computer implementation and generalized spectra. J. Assoc. Comput. Machinary (JACM) 17, 260–268 (Apr. 1970)MathSciNetMATHCrossRefGoogle Scholar
  101. G15.
    H.C. Andrews, Multidimensional rotations in feature selection. IEEE Trans. Comput. 20, 1045–1051 (Sept. 1971)MATHCrossRefGoogle Scholar
  102. G16.
    R.T. Lynch, J.J. Reis, Haar transform image coding, in Proc. Nat’l Telecommun. Conf., Dallas, TX, 1976, pp. 44.3-1−44.3-5Google Scholar
  103. G17.
    S. Wendling, G. Gagneux, G.A. Stamon, Use of the Haar transform and some of its properties in character recognition, in IEEE Proceedings of the 3rd Int’l Conf. on Pattern Recognition (ICPR), Coronado, CA, Nov. 1976, pp. 844−848Google Scholar
  104. G18.
    S. Wendling, G. Gagneux, G.A. Stamon, Set of invariants within the power spectrum of unitary transformations. IEEE Trans. Comput. 27, 1213–1216 (Dec. 1978)MathSciNetMATHCrossRefGoogle Scholar
  105. G19.
    V.V. Dixit, Edge extraction through Haar transform, in IEEE Proceedings of the 14th Asilomar Conference on Circuits Systems and Computations, Pacific Grove, CA, 1980, pp. 141−143Google Scholar
  106. G20.
    J.E. Shore, On the application of Haar functions. IEEE Trans. Commun. 21, 209–216 (Mar. 1973)CrossRefGoogle Scholar
  107. G21.
    D.F. Elliott, K.R. Rao, Fast Transforms: Algorithms, Analyses, Applications (Academic Press, Orlando, FL, 1982)MATHGoogle Scholar
  108. A3.
    S. Venkataraman et al., Discrete transforms via the Walsh-Hadamard transform. Signal Process. 14, 371–382 (June 1988)MathSciNetCrossRefGoogle Scholar
  109. A31.
    B.G. Jo, H. Sunwoo, New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place strategy. IEEE Trans. Circ. Syst. I Reg. Papers 52, 911–919 (May 2005)MathSciNetCrossRefGoogle Scholar
  110. T1.
    I.J. Good, The interaction algorithm and practical Fourier analysis. J. Royal Stat. Soc. B 20, 361–372 (1958)MathSciNetMATHGoogle Scholar
  111. J3.
    D.J. Mulvaney, D.E. Newland, K.F. Gill, A comparison of orthogonal transforms in their application to surface texture analysis. Proc. Inst. Mech. Engineers 200, no. C6, 407–414 (1986)CrossRefGoogle Scholar
  112. K1.
    T.K. Sarkar, E. Arvas, S.M. Rao, Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies. IEEE Trans. Antennas Propagat. 34, 635–640 (May 1986)CrossRefGoogle Scholar
  113. K2.
    T.J. Peters, J.L. Volakis, Application of a conjugate gradient FFT method to scattering from thin planar material plates. IEEE Trans. Antennas Propagat. 36, 518–526 (Apr. 1988)CrossRefGoogle Scholar
  114. K3.
    H. Zhai et al., Analysis of large-scale periodic array antennas by CG-FFT combined with equivalent sub-array preconditioner. IEICE Trans. Commun. 89, 922–928 (Mar. 2006)CrossRefGoogle Scholar
  115. K4.
    H. Zhai et al., Preconditioners for CG-FMM-FFT implementation in EM analysis of large-scale periodic array antennas, IEICE Trans. Commun., vol. 90, pp. 707–710, 2007Google Scholar
  116. AP2.
    Y. Wu, B. Caron, Digital television terrestrial broadcasting. IEEE Commun. Magazine 32, 46–52 (May 1994)Google Scholar
  117. LA7.
    H. Dutagaci, B. Sankur, Y. Yemez, 3D face recognition by projection-based methods, in Proc. SPIE-IS&T, vol. 6072, San Jose, CA, Jan. 2006, pp. 60720I-1 thru 11Google Scholar
  118. LA8.
  119. LA9.
    J. Wu, W. Zhao, New precise measurement method of power harmonics based on FFT, in IEEE ISPACS, Hong Kong, China, Dec. 2005, pp. 365–368Google Scholar
  120. LA12.
    A.M. Raičević, B.M. Popović, An effective and robust fingerprint enhancement by adaptive filtering in frequency domain, Series: Electronics and Energetics (Facta Universitatis, University of Niš, Serbia, Apr. 2009), pp. 91–104, available: http://factaee.elfak.ni.ac.rs/
  121. LA15.
    B.G. Sherlock, D.M. Monro, K. Millard, Fingerprint enhancement by directional Fourier filtering. IEE Proc. Image Signal Process. 141, 87–94 (Apr. 1994)CrossRefGoogle Scholar
  122. LA25.
    J. Ma, G. Plonka, The curvelet transform [A review of recent applications]. IEEE SP Mag. 27(2), 118–133 (Mar. 2010)CrossRefGoogle Scholar
  123. W29.
  124. W30.
    J.P. Hornak, The Basics of MRI (1996–2010), http://www.cis.rit.edu/htbooks/mri/

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Electr. EngineeringUniv. of Texas at ArlingtonArlingtonUSA
  2. 2.School of Electron. & Inform. EngineeringKunsan National Univ.KunsanKorea, Republic of (South Korea)

Personalised recommendations