Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 7672 Accesses

Abstract

For signals consisting of a number of frequency components, the Fourier transform 4 (FT) effectively reveals their frequency contents and is generally able to represent 5 the signals with an acceptable resolution divided by equal bandwidth in the 6 frequency domain. The discrete Fourier transform (DFT) is an important tool for 7 digital signal processing, in which the N-point DFT of a length-N sequence is given 8 by the frequency samples at N-uniformly spaced points [W23]. It has been widely 9 applied in solving both time-domain and frequency-domain problems, signal anal- 10 ysis/synthesis, detection/estimation, and data compression [B6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989)

    MATH  Google Scholar 

  2. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 1998)

    Google Scholar 

  3. S.J. Leon, Linear Algebra with Applications, 6th edn. (Prentice-Hall, Upper Saddle River, NJ, 2006)

    Google Scholar 

  4. L.C. Ludeman, Random Processes: Filtering, Estimation and Detection (Wiley, Hoboken, NJ, 2003)

    Google Scholar 

  5. G. Goertzel, An algorithm for the evaluation of finite trigonometric series. Am. Mathem. Monthly 65, 34–35 (Jan. 1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (Apr. 1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications (Wiley, New York, 1977)

    Google Scholar 

  8. K. Atkinson, An Introduction to Numerical Analysis (Wiley, New York, 1978)

    MATH  Google Scholar 

  9. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. New York: Dover, pp. 15−16, 1992

    Google Scholar 

  10. M. Lightstone et al., Efficient frequency-sampling design of one- and two-dimensional FIR filters using structural subband decomposition. IEEE Trans. Circuits Syst. II 41, 189–201 (Mar. 1994)

    Article  Google Scholar 

  11. S. Bagchi, S.K. Mitra, An efficient algorithm for DTMF decoding using the subband NDFT. IEEE ISCAS 3, 1936–1939 (Apr./May 1995)

    Google Scholar 

  12. S. Bagchi, S.K. Mitra, The nonuniform discrete Fourier transform and its applications in filter design: Part I – 1-D. IEEE Trans. Circ. Sys. II Analog Digital SP 43, 422–433 (June 1996)

    Article  Google Scholar 

  13. S. Carrato, G. Ramponi, S. Marsi, A simple edge-sensitive image interpolation filter, in IEEE ICIP, vol. 3, Lausanne, Switzerland, Sept. 1996, pp. 711–714

    Google Scholar 

  14. S. Bagchi, S.K. Mitra, The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing (Kluwer, Norwell, MA, 1999)

    Book  Google Scholar 

  15. A.J.W. Duijndam, M.A. Schonewille, Nonuniform fast Fourier transform. Geophysics 64, 539–551 (Mar./Apr. 1999)

    Article  Google Scholar 

  16. D. Potts, G. Steidl, M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in Modern Sampling Theory: Mathematics and Applications, ed. by J.J. Benedetto, P.J.S.G. Ferreira (Birkhäuser, Boston, MA, 2001), pp. 247–270

    Google Scholar 

  17. J.A. Fessler, B.P. Sutton, Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. SP 51, 560–574 (Feb. 2003)

    Article  MathSciNet  Google Scholar 

  18. K. Fourmont, “Non-equispaced fast Fourier transforms with applications to tomography,” J. Fourier Anal. Appl., vol. 9, pp. 431–450, Sept. 2003

    Google Scholar 

  19. K.-Y. Su, J.-T. Kuo, Application of two-dimensional nonuniform fast Fourier transform (2-D NUFFT) technique to analysis of shielded microstrip circuits. IEEE Trans. Microw. Theory Techniq. 53, 993–999 (Mar. 2005)

    Article  Google Scholar 

  20. J.J. Hwang et al., Nonuniform DFT based on nonequispaced sampling. WSEAS Trans. Inform. Sci. Appl. 2, 1403–1408 (Sept. 2005)

    Google Scholar 

  21. J.O. Smith III, Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, 2nd edn (W3K Publishing, 2007), available: http://ccrma.stanford.edu/~jos/mdft/mdft.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rao, K.R., Kim, D.N., Hwang, J.J. (2010). Nonuniform DFT. In: Fast Fourier Transform - Algorithms and Applications. Signals and Communication Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6629-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6629-0_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6628-3

  • Online ISBN: 978-1-4020-6629-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics