Skip to main content

Towards a Model for Large Strain Anisotropic Elasto-Plasticity

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 7))

Summary

The modeling of large strain anisotropic elasto-plasticity requires that the elastic response can be anisotropic, the yielding is governed by anisotropic yield functions, the hardening is anisotropic and the principal anisotropic elastic and yield directions can align themselves to more favorable stress directions during the response. For general finite element analysis, the model also needs to be macroscopically-based and computationally effective. We have worked towards such a model based on using the decomposition of the deformation gradient into elastic and plastic parts, logarithmic strains, exponential mapping and the plastic spin as an internal variable. The objective of this presentation is to give basic theoretical considerations and a computational framework for this anisotropic elasto-plasticity model. We also present some numerical results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kojić M, Bathe KJ (2005) Inelastic analysis of solids and structures. SpringerVerlag, New York

    Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  3. Simó JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part I: Continuum formulation. Comp Meth Appl Mech Engrng 66:199–219. Part II: Computational aspects. Comp Meth Appl Mech Engrng 68:1–31

    MATH  Google Scholar 

  4. Simó JC, Hughes TJR (1998) Computational inelasticity. Springer-Verlag, New Yo r k

    MATH  Google Scholar 

  5. Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Num Meth Engrg 9:353–386

    Article  MATH  Google Scholar 

  6. Kojić M, Bathe KJ (1987) Studies of finite element procedures—Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation. Comp Struct 26:175–179

    Article  MATH  Google Scholar 

  7. Lee EH (1969) Elastic-plastic deformations at finite strains. J Appl Mech ASME 36:1–6

    MATH  Google Scholar 

  8. Lee EH, Liu DT (1967) Finite-strain elastic-plastic theory with application to plane wave analysis. J Appl Phys 38:19–27

    Article  Google Scholar 

  9. Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: A new application of the methods of Non-Riemannian Geometry. Proc Roy Soc London Ser A 231:263–273

    Article  MathSciNet  Google Scholar 

  10. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids. Comp Meth Appl Mech Engrg 79:173–202

    Article  MATH  Google Scholar 

  11. Eterović AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Num Meth Engrg 30:1099–1114

    Article  MATH  Google Scholar 

  12. Simó JC (1992) Algorithms for multiplicative plasticity that preserve the form of the return mappings of the infinitesimal theory. Comp Meth Appl Mech Engrg 99:61–112

    Article  MATH  Google Scholar 

  13. Perić D, de Souza EA (1999) A new model for Tresca plasticity at finite strains with an optimal parametrization in the principal space. Comp Meth Appl Mech Engrg 171:463–489

    Article  MATH  Google Scholar 

  14. Montǡns FJ, Bathe KJ (2003) On the stress integration in large strain elasto-plasticity. In: Bathe KJ (ed) Computational fluid and solid mechanics 2003. Elsevier, Oxford

    Google Scholar 

  15. Montǡns FJ, Bathe KJ (2005) Computational issues in large strain elasto-plasticity: An algorithm for mixed hardening and plastic spin. Int J Num Meth Engrg 63:159–196

    Article  Google Scholar 

  16. Cuitiño A, Ortiz M (1992) A material-independent method for extending stress update algorithms from small strain plasticity to finite plasticity with multiplicative kinematics. Engrg Comp 9:437–451

    Google Scholar 

  17. Borja RI, Tamagnini C (1998) Cam—Clay plasticity, Part III: Extension of the infinitesimal model to include finite strains. Comp Meth Appl Mech Engrg 155, 77–95

    Article  Google Scholar 

  18. Papadopoulus P, Lu J (1998) A general framework for the numerical solution of problems in finite elasto-plasticity. Comp Meth Appl Mech Engrg 159:1–18

    Article  Google Scholar 

  19. Car E, Oller S, Oñate E (2001) A large strain plasticity model for anisotropic materials—composite material application. Int J Plasticity 17:1537–1463

    Article  Google Scholar 

  20. Miehe C, Apel N, Lambrecht M (2002) Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comp Meth Appl Mech Engrg 191:5383–5426

    Article  MATH  MathSciNet  Google Scholar 

  21. Eidel B, Gruttmann F (2003) On the theory and numerics of orthotropic elasto-plasticity at finite plastic strains. In: Bathe KJ (ed) Computational fluid and solid mechanics 2003. Elsevier, Oxford

    Google Scholar 

  22. Han CS, Lee MG, Chung K, Wagoner RH (2003) Integration algorithms for planar anisotropic shells with isotropic and kinematic hardening at finite strains. Comm Num Meth Engrg 19:473–490

    Article  MATH  Google Scholar 

  23. Loret B (1983) On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech Mater 2:287–304

    Article  Google Scholar 

  24. Dafalias YF (1985) The plastic spin. J Appl Mech ASME 52:865–871

    MATH  MathSciNet  Google Scholar 

  25. Dafalias YF (1990) On the microscopic origin of the plastic spin. Acta Mech 82:31–48

    Article  MathSciNet  Google Scholar 

  26. Anand L (1983) Elasto-viscoplasticity: Constitutive modelling and deformation processing. In Teodosiu C, Raphanel JL, Sidoroff F (eds) Large plastic deformations. AA Balkema, Rotterdam

    Google Scholar 

  27. Dafalias YF (1998) The plastic spin: necessity or redundancy? Int J Plasticity 14:909–931

    Article  MATH  Google Scholar 

  28. Kuroda M, Tvergaard V (2001) Plastic spin associated with a non-normality theory of plasticity. Eur J Mech A/Solids 20:893–905

    Article  MATH  Google Scholar 

  29. Khan AS, Huang S (1995) Continuum theory of plasticity. John Wiley & Sons, New York

    MATH  Google Scholar 

  30. Levitas V (1998) A new look at the problem of plastic spin based on stability analysis. J Mech Phys Solids 46:557–590

    Article  MATH  MathSciNet  Google Scholar 

  31. Tong W, Tao H, Jiang X (2004) Modeling the rotation of orthotropic axes of sheet metals subjected to off-axis uniaxial tension. J Appl Mech ASME 71:521–531

    Article  MATH  Google Scholar 

  32. Kim KH, Yin JJ (1997) Evolution of anisotropy under plane stress. J Mech Phys Solids 45:841–851

    Article  Google Scholar 

  33. Kowalewski ZL, Sliwowski M (1997) Effect of cyclic loading on the yield surface evolution of 18G2A low-alloy steel. Int J Mech Sci 39:51–68

    Article  Google Scholar 

  34. Bunge HJ, Nielsen I (1997) Experimental determination of plastic spin in poly-crystalline materials. Int J Plasticity 13:435–446

    Article  Google Scholar 

  35. Truong Qui HK, Lippmann H. (2001) Plastic spin and evolution of an anisotropic yield condition. Int J Mech Sci 43:1969–1983

    Article  MATH  Google Scholar 

  36. Boheler JP, Koss S (1991) Evolution of anisotropy in sheet steels subjected fo off-axes large deformation. In Brueler O, Mannl V, Najar J (eds) Advances in continuum mechanics. Springer, Berlin

    Google Scholar 

  37. R.H. Randal, C. Zener (1940) Internal friction of aluminum. Phys Rev 58:472–473

    Article  Google Scholar 

  38. Tam AC, Leung WP (1984) Measurement of small elastic anisotropy in solids using laser-induced ultrasonic pulses. Appl Phys L 45:1040–1042

    Article  Google Scholar 

  39. Dvorkin EN, Goldschmit MB (2006) Nonlinear continua. Springer-Verlag, New Yo r k

    MATH  Google Scholar 

  40. Morán B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Num Meth Engrg 29:483–514

    Article  MATH  Google Scholar 

  41. Anand L (1985) Constitutive equations for hot-working of metals. Int J Plasticity 1:213–231

    Article  MATH  Google Scholar 

  42. Simó JC (1986) On the computational significance of the intermediate configuration and hyperelastic relations in finite deformation elastoplasticity. Mech Mat 4:439–451

    Article  Google Scholar 

  43. Bathe KJ, Montáns FJ (2004) On modelling mixed hardening in computational plasticity. Comp Struct 82:535–539

    Article  Google Scholar 

  44. Montáns FJ, Bathe KJ (2005) Large strain anisotropic plasticity including effects of plastic spin. In: Bathe KJ (ed) Computational fluid and solid mechanics 2005. Elsevier, Oxford

    Google Scholar 

  45. Tsakmakis Ch (2004) Description of plastic anisotropy effects at large deformations—part I: restrictions imposed by the second law and the postulate of Il'iushin. Int J Plasticity 20:167–198

    Article  MATH  Google Scholar 

  46. Eidel B, Gruttmann F (2005) Anisotropic pile-up pattern at spherical indentation into a fcc single crystal—finite element analysis versus experiment. In: Bathe KJ (ed) Computational fluid and solid mechanics 2005. Elsevier, Oxford

    Google Scholar 

  47. Han C-S, Choi Y, Lee J-K, Wagoner RH (2002) A FE formulation for elasto-plastic materials with planar anisotropic yield functions and plastic spin. Int J Solids Struct 39:5123–5141

    Article  MATH  Google Scholar 

  48. Han C-S, Chung K, Wagoner RH, S-I Oh (2003) A multiplicative finite elasto-plastic formulation with anisotropic yield functions. Int J Plasticity 19:197–211

    Article  MATH  Google Scholar 

  49. Luo L, Ghosh AK (2003) Elastic and inelastic recovery after plastic deformation of DQSK steel sheet. J Engrg Mater Tech ASME 125:237–246

    Article  Google Scholar 

  50. Lauwagie T, Sol H, Roebben G, Heylen W, Shi Y (2002) Validation of the Resonalyser method: an inverse method for material identification. Proc Int Conf Noise Vibration Engrg, ISMA2002, Leuven, Belgium

    Google Scholar 

  51. Montáns FJ, Bathe KJ (in preparation) A framework for computational large strain plasticity—anisotropic elasticity, anisotropic yield functions and mixed hardening

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Montáns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Montáns, F.J., Bathe, K.J. (2007). Towards a Model for Large Strain Anisotropic Elasto-Plasticity. In: Oñate, E., Owen, R. (eds) Computational Plasticity. Computational Methods in Applied Sciences, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6577-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6577-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6576-7

  • Online ISBN: 978-1-4020-6577-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics