Skip to main content

Radiation Availability in Agroforestry System of Coffee and Rubber Trees

  • Chapter

Part of the book series: Advances in Agroforestry ((ADAG,volume 4))

Arabic coffee (Coffea arabica L.) originates in the high lands of Southern Ethiopia, close to the equator, at latitudes 6 to 9° N, longitudes of 34 to 40° E and altitudes of 1400 and 1800 m. This region has a dry season that lasts for 3–4 months, and the annual precipitation ranges from 1200 to 2000 mm throughout the year. Temperature varies from 18°C to 22°C. In this area, coffee plants always grow under conditions of shade in the tropical forest (Krug, 1959; Kumar, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvim, P.T. 1960. Physiology of growth and flowering in coffee. Turrialba 2: 57–62.

    Google Scholar 

  • Alvin, P.T. 1977. Cacau. In: Alvim, P.T. and Kozlowski, T.T. (eds) Ecophysiology of tropical crops. Academy Press, New York, pp. 279–313.

    Google Scholar 

  • Beer, J.W., Muschler, R.G., Kass, D., Somarriba, E. 1998. Shade management in coffee and cacao plantations. Agroforestry Systems. 38: 139–164.

    Article  Google Scholar 

  • Bernardes, M.S. 1987. Fotossíntese no dossel das plantas cultivadas. In: Castro, P.R.C., Ferreira, S.O. and Yamada, T. (eds) Ecofisiologia da produção agrícola. PATAFOS, Piracicaba, Brazil, pp. 13–48.

    Google Scholar 

  • Bernardes, M.S. 1993. Simulation of agroforestry systems: the case of rubber tree associated with other crops. Wageningen Agricultural University, Wageningen–the Netherlands, 63 p. (Doctor Degree Program).

    Google Scholar 

  • Bernardes, M.S., Goudriaan, J., Camara, G.M.S. and Dourado-Neto, D. 1998. Tree-crop interactions in agroforestry system of rubber with soybean and maize. In: Congress of the European Society for Agronomy, 5, Nitra–Slovakia, 1998. Short communications. v. II. Slovakia, ESA, pp. 125–126.

    Google Scholar 

  • Bernardes, M.S., Castro, P.R.C. and Martins, A.N. 1996. Formação da copa e resistência de árvores ao vento: modelo de seringueira. FEALQ, Piracicaba, Brazil, 88 p.

    Google Scholar 

  • Björkman, O., Boardman, N.K., Anderson, J.M., Thorne, S.W., Goodchild, D.J. and Pyliotis, N.A. 1972. Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnigie Inst. Year Book 71: 115–135.

    Google Scholar 

  • Brenner, A.J. 1996. Microclimatic modifications in agroforestry. In: Ong C.K. and Huxley P. (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, UK, pp. 159–188.

    Google Scholar 

  • Campbell, G.S. and Norman, J.M. 1989. The description and measurement of plant canopy structure. In: Russel, G., Marshall, B., Jarvis, P.G. (eds), Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, UK, pp. 1–20.

    Google Scholar 

  • Cannel, M.G.R. 1976. Crop physiological aspects of coffee bean yield. Kenya Coffee 41(484): 245–253.

    Google Scholar 

  • Caramori, P.H., Androcioli Filho, A., Bagio, A. 1995. Arborização do cafezal com Grevillea robusta no Norte do Estado do Paraná. Arquivos de Biologia e Tecnologia. 38(4): 1031–1037.

    Google Scholar 

  • Confalone, A.E., Costa, L.C., Pereira, C.R. 1997. Eficiencia de uso de la radiación en distintas fases fenológicas bajo estrés hídrico. Revista de la Facultad de Agronomía 17(1): 63–66.

    Google Scholar 

  • Corlett, J.E., Ong, C.K., Black, C.R. 1987. Microclimatic modifications in intercropping and alley cropping systems. In: Reifsnyder, W.S. and Darnhofer, T.O. (eds) Meteorology and agroforestry. ICRAF, Nairobi, Kenya, pp. 419–430.

    Google Scholar 

  • Esaú, K. 1977. Anatomy of seed plants. Wiley, New York, 550 p.

    Google Scholar 

  • Evanoff, C.E.A. 1994. Biologia del cafe. Coleccion estudios. Ed. Universidade Central de Venezuela, Caracas, Venezuela, 308 p.

    Google Scholar 

  • Evans, J.R., Caemmerer, S. Von and Adams III, W.W. 1988. Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, Austrália, 358 p.

    Google Scholar 

  • Fahl, J.J. 1989. Influência da irradiância e do nitrogênio na fotossíntese e crescimento de plantas jovens de café (Coffea arabica L.). UNICAMP, Campinas, Brazil, 84 p. (PhD thesis).

    Google Scholar 

  • Farfan, V.F. and Mestre, M.A. 2004. Respuesta del café cultivado en un sistema agroflorestal a la aplicación de fertilizantes. Cenicafe. 52(2): 161–174.

    Google Scholar 

  • Givinish, T.J. 1986. On the economy of plant form and function. Cambridge University Press, Cambridge, UK, 680 p.

    Google Scholar 

  • Givinish, T.J. 1984. Leaf and canopy adaptations in tropical forests. In: Medina E., Mooney H.A. and Vásquez-Yánes C. (eds) Physiological ecology of plants of the wet tropics. Dr. Junk, The Hague, The Netherlands, pp. 51–84.

    Google Scholar 

  • Givinish, T.J. 1988. Adaptation to sun and shade: a whole-plant perspective. In: Evans J.R., Caemmerer S. Von and Adams III W.W. (eds) Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, Australia, pp. 63–92.

    Google Scholar 

  • Goudriaan, J. 1977. Crop micrometeorology: a simulation study. PUDOC, Wageningen, The Netherlands, 249 p. (Simulation Monographs).

    Google Scholar 

  • Guiscafre-Arrillaga, J. 1957. Sombra o sol para el cafeto? El café de El Salvador 308/309: 320–364.

    Google Scholar 

  • Horn, H.S. 1971. The adaptive geometry of trees. Princeton University Press. Princeton, NJ.

    Google Scholar 

  • Kimemia, J.K. and Njoroge, J.M. 1988. Effect of shade on coffee–a review. Kenya Coffee 53(622): 387–391.

    Google Scholar 

  • King, D. 1981. Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51: 351–356.

    Article  Google Scholar 

  • Krug, C.A. 1959. World coffee survey. FAO, Roma, IT, 292 p.

    Google Scholar 

  • Kumar, D. and Tieszen, L.L. 1980. Photosynthesis in Coffea arabica_L. II. Effect of water stress. Expl. Agr. 16: 21–27.

    Article  CAS  Google Scholar 

  • Kumar, D. 1979. Some aspects of the physiology of Coffea arabica L. A review. Coffee Kenya 44: 9–47.

    Google Scholar 

  • Kumar, D. 1978. Investigation into some physiological aspects of high density plantings of coffee (Coffea arabica L.). Coffee Kenya 43(510): 263–272.

    Google Scholar 

  • Larcher, W. 1995. Physiological plant ecology. Springer, Berlim, Alemanha, 252 p.

    Google Scholar 

  • Leong, W. 1980. Canopy modification and its effects on growth and yield of Hevea brasiliensis. Faculty of Agricultural Sciences of Ghent, Belgium, 283 pp. (PhD thesis).

    Google Scholar 

  • Lock, C.G.W. 1988. Coffee: its culture and commerce in all countries. E and FN Spon, London.

    Google Scholar 

  • Monsi, M. and Saeki, T. 1953. Über den lichtfaktor in den planzen-gesell-schaften und seine bedeutung für die Stoffproduktion. Jap. J. Bot. 14: 22–52.

    Google Scholar 

  • Monteith, J.L., Ong, C.K. and Corlett, J.E. 1991. Microclimatic interactions in agroforestry systems. For. Ecol. Manag. 45: 31–44.

    Article  Google Scholar 

  • Muschler R.G. 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems. 85: 131–139.

    Article  Google Scholar 

  • Ong, C.K., Corlett J.E., Marshall F.M., and Black, C.R. 1996. Principles of resource capture and utilization of light and water. In: Ong C.K. and Huxley P. (eds) Tree-crop interactions: A physiological approach. CAB International, Wallingford, UK, pp. 73–158.

    Google Scholar 

  • Ong, C.K., Corlett, J.E., Singh, R.P. and Black, C.R. 1991. Above and below-ground interactions in agroforestry systems. Forest Ecology and Management 45: 45–57.

    Article  Google Scholar 

  • Pereira, C.R. 2002. Análise do crescimento e desenvolvimento da cultura da soja sob diferentes condições ambientais. Universidade Federal de Viçosa, Viçosa, Brazil, 282 p. (PhD thesis).

    Google Scholar 

  • Righi, C.A. 2000. Interações ecofisiológicas acima e abaixo do solo em um sistema agroflorestal de seringueira (Hevea brasiliensis) e feijoeiro (Phaseolus vulgaris). Piracicaba, Brazil, 130 p. (MSc thesis).

    Google Scholar 

  • Robledo, A.J. 1979. Balanço de radiação solar em Coffea arabiica L. variedade Catuaí e Bourbon Amarelo. ESALQ-USP, Piracicaba, Brazil, 68 p. (MSc thesis).

    Google Scholar 

  • Russell, G., Jarvis, P.G. and Monteith, J.L. 1989. Absorption of radiation by canopies and stand growth. In: Russel G., Marshall B., Jarvis P.G. (eds), Plant canpies: their growth, form and function. Cambridge University Press, Cambridge, UK, pp. 21–40.

    Google Scholar 

  • Sakamoto, C.M. and Shaw, R.S. 1967. Light distribution in field soybeans canopies. Agronomy Journal 59(1): 7–9.

    Article  Google Scholar 

  • Šesták, Z. 1981. Leaf ontogeny and photosynthesis. In: Johnson C.B. (ed) Physiological processes limiting plant productivity. Butterworths, London, UK, pp. 147–158.

    Google Scholar 

  • Siebert, S.F. 2002. From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodiversity and Conservation 11(11): 1889–1902.

    Article  Google Scholar 

  • Vianello, R.L. and Alves, A.R. 2000. Meteorologia básica e aplicações. Imprensa Universitária–UFV, Viçosa, Brazil, 449 p.

    Google Scholar 

  • Villa Nova, N.A. and Sentelhas, P.C. 1999. Evapotranspiração máxima do feijoeiro, cv. Goiano precoce, em função do índice de área foliar e da evapotranspiração do tanque Classe A. In: Reunião Latino-Americana De Agrometeorologia, II - Anais - 1: 212–218.

    Google Scholar 

  • Villa Nova, N.A., Angelocci, L.R., Coelho, M.A., Marin, F.R. and Righi, C.A. 2003. Determinação da área foliar de árvores adultas de lima ácida ‘Tahiti’ e do índice de área foliar de um seringal com luxímetro de baixo custo. XIII CONIRD–Congresso Nacional de Irrigação de Drenagem–Juazeiro/BA, outubro/2003.

    Google Scholar 

  • Voltan, R.B.Q., Fahl, J.J. and Carelli, M.L.C. 1992. Variação na anatomia foliar de cafeeiros submetidos a diferentes intensidades luminosas. Brazilian Journal of Plant Physiology 4(2): 99–105.

    Google Scholar 

  • Watson, D.J. 1958. The dependence of net assimilation rate on leaf area index. Annals of Botany 22: 37–54.

    Google Scholar 

  • Willey, R. W. and Reddy, M. S. 1981. A field technic for separating above-and bellow interactions in intercropping and experiment with pearl millet groundnut. Expl. Agric. 17: 257–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Righi, C.A., Lunz, A.M.P., Bernardes, M.S., Pereira, C.R., Dourado-Neto, D., Favarin, J.L. (2008). Radiation Availability in Agroforestry System of Coffee and Rubber Trees. In: Jose, S., Gordon, A.M. (eds) Toward Agroforestry Design. Advances in Agroforestry, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6572-9_15

Download citation

Publish with us

Policies and ethics