Radiation Availability in Agroforestry System of Coffee and Rubber Trees

  • C. A. Righi
  • A. M. P. Lunz
  • M. S. Bernardes
  • C. R. Pereira
  • D. Dourado-Neto
  • J. L. Favarin
Part of the Advances in Agroforestry book series (ADAG, volume 4)

Arabic coffee (Coffea arabica L.) originates in the high lands of Southern Ethiopia, close to the equator, at latitudes 6 to 9° N, longitudes of 34 to 40° E and altitudes of 1400 and 1800 m. This region has a dry season that lasts for 3–4 months, and the annual precipitation ranges from 1200 to 2000 mm throughout the year. Temperature varies from 18°C to 22°C. In this area, coffee plants always grow under conditions of shade in the tropical forest (Krug, 1959; Kumar, 1979).

Keywords

Maize Attenuation Rubber Respiration Assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvim, P.T. 1960. Physiology of growth and flowering in coffee. Turrialba 2: 57–62.Google Scholar
  2. Alvin, P.T. 1977. Cacau. In: Alvim, P.T. and Kozlowski, T.T. (eds) Ecophysiology of tropical crops. Academy Press, New York, pp. 279–313.Google Scholar
  3. Beer, J.W., Muschler, R.G., Kass, D., Somarriba, E. 1998. Shade management in coffee and cacao plantations. Agroforestry Systems. 38: 139–164.CrossRefGoogle Scholar
  4. Bernardes, M.S. 1987. Fotossíntese no dossel das plantas cultivadas. In: Castro, P.R.C., Ferreira, S.O. and Yamada, T. (eds) Ecofisiologia da produção agrícola. PATAFOS, Piracicaba, Brazil, pp. 13–48.Google Scholar
  5. Bernardes, M.S. 1993. Simulation of agroforestry systems: the case of rubber tree associated with other crops. Wageningen Agricultural University, Wageningen–the Netherlands, 63 p. (Doctor Degree Program).Google Scholar
  6. Bernardes, M.S., Goudriaan, J., Camara, G.M.S. and Dourado-Neto, D. 1998. Tree-crop interactions in agroforestry system of rubber with soybean and maize. In: Congress of the European Society for Agronomy, 5, Nitra–Slovakia, 1998. Short communications. v. II. Slovakia, ESA, pp. 125–126.Google Scholar
  7. Bernardes, M.S., Castro, P.R.C. and Martins, A.N. 1996. Formação da copa e resistência de árvores ao vento: modelo de seringueira. FEALQ, Piracicaba, Brazil, 88 p.Google Scholar
  8. Björkman, O., Boardman, N.K., Anderson, J.M., Thorne, S.W., Goodchild, D.J. and Pyliotis, N.A. 1972. Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnigie Inst. Year Book 71: 115–135.Google Scholar
  9. Brenner, A.J. 1996. Microclimatic modifications in agroforestry. In: Ong C.K. and Huxley P. (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, UK, pp. 159–188.Google Scholar
  10. Campbell, G.S. and Norman, J.M. 1989. The description and measurement of plant canopy structure. In: Russel, G., Marshall, B., Jarvis, P.G. (eds), Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, UK, pp. 1–20.Google Scholar
  11. Cannel, M.G.R. 1976. Crop physiological aspects of coffee bean yield. Kenya Coffee 41(484): 245–253.Google Scholar
  12. Caramori, P.H., Androcioli Filho, A., Bagio, A. 1995. Arborização do cafezal com Grevillea robusta no Norte do Estado do Paraná. Arquivos de Biologia e Tecnologia. 38(4): 1031–1037.Google Scholar
  13. Confalone, A.E., Costa, L.C., Pereira, C.R. 1997. Eficiencia de uso de la radiación en distintas fases fenológicas bajo estrés hídrico. Revista de la Facultad de Agronomía 17(1): 63–66.Google Scholar
  14. Corlett, J.E., Ong, C.K., Black, C.R. 1987. Microclimatic modifications in intercropping and alley cropping systems. In: Reifsnyder, W.S. and Darnhofer, T.O. (eds) Meteorology and agroforestry. ICRAF, Nairobi, Kenya, pp. 419–430.Google Scholar
  15. Esaú, K. 1977. Anatomy of seed plants. Wiley, New York, 550 p.Google Scholar
  16. Evanoff, C.E.A. 1994. Biologia del cafe. Coleccion estudios. Ed. Universidade Central de Venezuela, Caracas, Venezuela, 308 p.Google Scholar
  17. Evans, J.R., Caemmerer, S. Von and Adams III, W.W. 1988. Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, Austrália, 358 p.Google Scholar
  18. Fahl, J.J. 1989. Influência da irradiância e do nitrogênio na fotossíntese e crescimento de plantas jovens de café (Coffea arabica L.). UNICAMP, Campinas, Brazil, 84 p. (PhD thesis).Google Scholar
  19. Farfan, V.F. and Mestre, M.A. 2004. Respuesta del café cultivado en un sistema agroflorestal a la aplicación de fertilizantes. Cenicafe. 52(2): 161–174.Google Scholar
  20. Givinish, T.J. 1986. On the economy of plant form and function. Cambridge University Press, Cambridge, UK, 680 p.Google Scholar
  21. Givinish, T.J. 1984. Leaf and canopy adaptations in tropical forests. In: Medina E., Mooney H.A. and Vásquez-Yánes C. (eds) Physiological ecology of plants of the wet tropics. Dr. Junk, The Hague, The Netherlands, pp. 51–84.Google Scholar
  22. Givinish, T.J. 1988. Adaptation to sun and shade: a whole-plant perspective. In: Evans J.R., Caemmerer S. Von and Adams III W.W. (eds) Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, Australia, pp. 63–92.Google Scholar
  23. Goudriaan, J. 1977. Crop micrometeorology: a simulation study. PUDOC, Wageningen, The Netherlands, 249 p. (Simulation Monographs).Google Scholar
  24. Guiscafre-Arrillaga, J. 1957. Sombra o sol para el cafeto? El café de El Salvador 308/309: 320–364.Google Scholar
  25. Horn, H.S. 1971. The adaptive geometry of trees. Princeton University Press. Princeton, NJ.Google Scholar
  26. Kimemia, J.K. and Njoroge, J.M. 1988. Effect of shade on coffee–a review. Kenya Coffee 53(622): 387–391.Google Scholar
  27. King, D. 1981. Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51: 351–356.CrossRefGoogle Scholar
  28. Krug, C.A. 1959. World coffee survey. FAO, Roma, IT, 292 p.Google Scholar
  29. Kumar, D. and Tieszen, L.L. 1980. Photosynthesis in Coffea arabica_L. II. Effect of water stress. Expl. Agr. 16: 21–27.CrossRefGoogle Scholar
  30. Kumar, D. 1979. Some aspects of the physiology of Coffea arabica L. A review. Coffee Kenya 44: 9–47.Google Scholar
  31. Kumar, D. 1978. Investigation into some physiological aspects of high density plantings of coffee (Coffea arabica L.). Coffee Kenya 43(510): 263–272.Google Scholar
  32. Larcher, W. 1995. Physiological plant ecology. Springer, Berlim, Alemanha, 252 p.Google Scholar
  33. Leong, W. 1980. Canopy modification and its effects on growth and yield of Hevea brasiliensis. Faculty of Agricultural Sciences of Ghent, Belgium, 283 pp. (PhD thesis).Google Scholar
  34. Lock, C.G.W. 1988. Coffee: its culture and commerce in all countries. E and FN Spon, London.Google Scholar
  35. Monsi, M. and Saeki, T. 1953. Über den lichtfaktor in den planzen-gesell-schaften und seine bedeutung für die Stoffproduktion. Jap. J. Bot. 14: 22–52.Google Scholar
  36. Monteith, J.L., Ong, C.K. and Corlett, J.E. 1991. Microclimatic interactions in agroforestry systems. For. Ecol. Manag. 45: 31–44.CrossRefGoogle Scholar
  37. Muschler R.G. 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems. 85: 131–139.CrossRefGoogle Scholar
  38. Ong, C.K., Corlett J.E., Marshall F.M., and Black, C.R. 1996. Principles of resource capture and utilization of light and water. In: Ong C.K. and Huxley P. (eds) Tree-crop interactions: A physiological approach. CAB International, Wallingford, UK, pp. 73–158.Google Scholar
  39. Ong, C.K., Corlett, J.E., Singh, R.P. and Black, C.R. 1991. Above and below-ground interactions in agroforestry systems. Forest Ecology and Management 45: 45–57.CrossRefGoogle Scholar
  40. Pereira, C.R. 2002. Análise do crescimento e desenvolvimento da cultura da soja sob diferentes condições ambientais. Universidade Federal de Viçosa, Viçosa, Brazil, 282 p. (PhD thesis).Google Scholar
  41. Righi, C.A. 2000. Interações ecofisiológicas acima e abaixo do solo em um sistema agroflorestal de seringueira (Hevea brasiliensis) e feijoeiro (Phaseolus vulgaris). Piracicaba, Brazil, 130 p. (MSc thesis).Google Scholar
  42. Robledo, A.J. 1979. Balanço de radiação solar em Coffea arabiica L. variedade Catuaí e Bourbon Amarelo. ESALQ-USP, Piracicaba, Brazil, 68 p. (MSc thesis).Google Scholar
  43. Russell, G., Jarvis, P.G. and Monteith, J.L. 1989. Absorption of radiation by canopies and stand growth. In: Russel G., Marshall B., Jarvis P.G. (eds), Plant canpies: their growth, form and function. Cambridge University Press, Cambridge, UK, pp. 21–40.Google Scholar
  44. Sakamoto, C.M. and Shaw, R.S. 1967. Light distribution in field soybeans canopies. Agronomy Journal 59(1): 7–9.CrossRefGoogle Scholar
  45. Šesták, Z. 1981. Leaf ontogeny and photosynthesis. In: Johnson C.B. (ed) Physiological processes limiting plant productivity. Butterworths, London, UK, pp. 147–158.Google Scholar
  46. Siebert, S.F. 2002. From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodiversity and Conservation 11(11): 1889–1902.CrossRefGoogle Scholar
  47. Vianello, R.L. and Alves, A.R. 2000. Meteorologia básica e aplicações. Imprensa Universitária–UFV, Viçosa, Brazil, 449 p.Google Scholar
  48. Villa Nova, N.A. and Sentelhas, P.C. 1999. Evapotranspiração máxima do feijoeiro, cv. Goiano precoce, em função do índice de área foliar e da evapotranspiração do tanque Classe A. In: Reunião Latino-Americana De Agrometeorologia, II - Anais - 1: 212–218.Google Scholar
  49. Villa Nova, N.A., Angelocci, L.R., Coelho, M.A., Marin, F.R. and Righi, C.A. 2003. Determinação da área foliar de árvores adultas de lima ácida ‘Tahiti’ e do índice de área foliar de um seringal com luxímetro de baixo custo. XIII CONIRD–Congresso Nacional de Irrigação de Drenagem–Juazeiro/BA, outubro/2003.Google Scholar
  50. Voltan, R.B.Q., Fahl, J.J. and Carelli, M.L.C. 1992. Variação na anatomia foliar de cafeeiros submetidos a diferentes intensidades luminosas. Brazilian Journal of Plant Physiology 4(2): 99–105.Google Scholar
  51. Watson, D.J. 1958. The dependence of net assimilation rate on leaf area index. Annals of Botany 22: 37–54.Google Scholar
  52. Willey, R. W. and Reddy, M. S. 1981. A field technic for separating above-and bellow interactions in intercropping and experiment with pearl millet groundnut. Expl. Agric. 17: 257–264.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • C. A. Righi
    • 1
  • A. M. P. Lunz
    • 2
  • M. S. Bernardes
    • 3
  • C. R. Pereira
    • 4
  • D. Dourado-Neto
    • 3
  • J. L. Favarin
    • 3
  1. 1.Dept. Crop ScienceESALQ, Universidade de São PauloPiracicabaBrazil
  2. 2.Centro de Pesquisa Agroflorestal do AcreEmpresa Brasileira de Pesquisa Agropecuária — EMBRAPAZona RuralAC — Brazil
  3. 3.Dept. Crop ScienceUniversidade de São PauloPiracicabaBrazil
  4. 4.Departamento de Ciências AmbientaisUniversidade Federal Rural do Rio de Janeiro — UFRRJ, Instituto de FlorestasSeropédicaBrazil

Personalised recommendations