Skip to main content

Rational Design of Therapeutics Targeting the BCL-2 Family: Are Some Cancer Cells Primed for Death but Waiting for a Final Push?

  • Chapter
Programmed Cell Death in Cancer Progression and Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

A mechanism for circumventing apoptosis prevalent in many cancer cells is the overexpression of antiapoptotic BCL-2 family members. Upregulated expression of BCL-2 may be required to permit ongoing death signaling without a cellular response. Therefore, antagonizing BCL-2 function may cause death in many cancer cells. The selection for expression of BCL-2 or other antiapoptotic proteins during oncogenesis may derive from these proteins' ability to bind and sequester proapoptotic BH3-only proteins. This situation may be advantageous from a therapeutic viewpoint because cancer cells may be distinguished from normal cells by being primed with death signals. There are several strategies currently under investigation that may lead to improved treatment of many cancers by taking advantage of these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C. M. The t(14;18) (1985). Chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393.

    Google Scholar 

  2. Cleary, M. L. and Sklar, J. (1985). Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82, 7439–7443.

    PubMed  CAS  Google Scholar 

  3. Bakhshi, A., Jensen, J. P., Goldman, P., Wright, J. J., McBride, O. W., Epstein, A. L., and Korsmeyer, S. J. (1985). Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899–906.

    PubMed  CAS  Google Scholar 

  4. Packham, G. (1998). Mutation of BCL-2 family proteins in cancer. Apoptosis 3, 75–82.

    PubMed  CAS  Google Scholar 

  5. McDonnell, T. J. and Korsmeyer, S. J. (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 349, 254–256.

    PubMed  CAS  Google Scholar 

  6. Strasser, A., Harris, A. W., Bath, M. L., and Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333.

    PubMed  CAS  Google Scholar 

  7. Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., and Korsmeyer, S. J. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2 +: a control point for apoptosis. Science 300, 135–139.

    PubMed  CAS  Google Scholar 

  8. Bassik, M. C., Scorrano, L., Oakes, S. A., Pozzan, T., and Korsmeyer, S. J. (2004). Phosphorylation of BCL-2 regulates ER Ca2 + homeostasis and apoptosis. EMBO J 23, 1207–1216.

    PubMed  CAS  Google Scholar 

  9. Kamer, I., Sarig, R., Zaltsman, Y., Niv, H., Oberkovitz, G., Regev, L., Haimovich, G., Lerenthal, Y., Marcellus, R. C., and Gross, A. (2005). Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122, 593–603.

    PubMed  CAS  Google Scholar 

  10. Zinkel, S. S., Hurov, K. E., Ong, C., Abtahi, F. M., Gross, A., and Korsmeyer, S. J. (2005). A role for proapoptotic BID in the DNA-damage response. Cell 122, 579–591.

    PubMed  CAS  Google Scholar 

  11. Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., Datta, S. R., Greenberg, M. E., Licklider, L. J., Lowell, B. B., Gygi, S. P., and Korsmeyer, S. J. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956.

    PubMed  CAS  Google Scholar 

  12. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481–1486.

    PubMed  CAS  Google Scholar 

  13. Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., and Korsmeyer, S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8, 705–711.

    PubMed  CAS  Google Scholar 

  14. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    PubMed  CAS  Google Scholar 

  15. Puthalakath, H. and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9, 505–512.

    PubMed  CAS  Google Scholar 

  16. Danial, N. N. and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205–219.

    PubMed  CAS  Google Scholar 

  17. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192.

    PubMed  CAS  Google Scholar 

  18. Lindsten, T., Ross, A. J., King, A., Zong, W.-X., Rathmell, J. C., Shiels, H. A., Ulrich, E., Waymire, K. G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V. M., Adelman, D. M., Simon, M. C., Ma, A., Golden, J. A., Evan, G., Korsmeyer, S. J., MacGregor, G. R., and Thompson, C. B. (2000). The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6, 1389–1399.

    PubMed  CAS  Google Scholar 

  19. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, 2060–2071.

    PubMed  CAS  Google Scholar 

  20. Suzuki, M., Youle, R. J., and Tjandra, N. (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654.

    PubMed  CAS  Google Scholar 

  21. Griffiths, G. J., Dubrez, L., Morgan, C. P., Jones, N. A., Whitehouse, J., Corfe, B. M., Dive, C., and Hickman, J. A. (1999). Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144, 903–914.

    PubMed  CAS  Google Scholar 

  22. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J. C. (1999). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891–901.

    PubMed  CAS  Google Scholar 

  23. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    PubMed  CAS  Google Scholar 

  24. Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99.

    PubMed  CAS  Google Scholar 

  25. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    PubMed  CAS  Google Scholar 

  26. Wang, J. L., Zhang, Z. J., Choksi, S., Shan, S., Lu, Z., Croce, C. M., Alnemri, E. S., Korngold, R., and Huang, Z. (2000). Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 60, 1498–1502.

    PubMed  CAS  Google Scholar 

  27. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.

    PubMed  CAS  Google Scholar 

  28. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.

    PubMed  CAS  Google Scholar 

  29. Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922–2933.

    PubMed  CAS  Google Scholar 

  30. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014.

    PubMed  CAS  Google Scholar 

  31. Moll, U. M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17, 631–636.

    PubMed  CAS  Google Scholar 

  32. Murphy, M. E., Leu, J. I., and George, D. L. (2004). p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle 3, 836–839.

    PubMed  CAS  Google Scholar 

  33. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E., and George, D. L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6, 443–450.

    PubMed  CAS  Google Scholar 

  34. Cheng, E. H., Levine, B., Boise, L. H., Thompson, C. B., and Hardwick, J. M. (1996). Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379, 554–556.

    PubMed  CAS  Google Scholar 

  35. Certo, M., Moore, V. D. G., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A., and Letai, A. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5), 351–365.

    PubMed  CAS  Google Scholar 

  36. Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., Green, D. R., and Newmeyer, D. D. (2005). BH3 Domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17, 525–535.

    PubMed  CAS  Google Scholar 

  37. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M., and Huang, D. C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393–403.

    PubMed  CAS  Google Scholar 

  38. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    PubMed  CAS  Google Scholar 

  39. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899–1911.

    PubMed  CAS  Google Scholar 

  40. Kitada, S., Pedersen, I. M., Schimmer, A. D., and Reed, J. C. (2002). Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 21, 3459–3474.

    PubMed  CAS  Google Scholar 

  41. Wang, S., Yang, D., and Lippman, M. E. (2003). Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 30, 133–142.

    PubMed  CAS  Google Scholar 

  42. Mounier, N., Briere, J., Gisselbrecht, C., Emile, J. F., Lederlin, P., Sebban, C., Berger, F., Bosly, A., Morel, P., Tilly, H., Bouabdallah, R., Reyes, F., Gaulard, P., and Coiffier, B. (2003). Rituximab plus CHOP (R-CHOP) overcomes bcl-2-associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood 101, 4279–4284.

    PubMed  CAS  Google Scholar 

  43. Gascoyne, R. D., Adomat, S. A., Krajewski, S., Krajewska, M., Horsman, D. E., Tolcher, A. W., O’Reilly, S. E., Hoskins, P., Coldman, A. J., Reed, J. C., and Connors, J. M. (1997). Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood 90, 244–251.

    PubMed  CAS  Google Scholar 

  44. Hill, M. E., MacLennan, K. A., Cunningham, D. C., Vaughan Hudson, B., Burke, M., Clarke, P., Di Stefano, F., Anderson, L., Vaughan Hudson, G., Mason, D., Selby, P., and Linch, D. C. (1996). Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National Lymphoma Investigation Study. Blood 88, 1046–1051.

    PubMed  CAS  Google Scholar 

  45. Joensuu, H., Pylkkanen, L., and Toikkanen, S. (1994). Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 145, 1191–1198.

    PubMed  CAS  Google Scholar 

  46. Leek, R. D., Kaklamanis, L., Pezzella, F., Gatter, K. C., and Harris, A. L. (1994). bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer 69, 135–139.

    PubMed  CAS  Google Scholar 

  47. McDonnell, T. J., Troncoso, P., Brisbay, S. M., Logothetis, C., Chung, L. W., Hsieh, J. T., Tu, S. M., and Campbell, M. L. (1992). Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52, 6940–6944.

    PubMed  CAS  Google Scholar 

  48. Sinicrope, F. A., Hart, J., Michelassi, F., and Lee, J. J. (1995). Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res 1, 1103–1110.

    PubMed  CAS  Google Scholar 

  49. Buolamwini, J. K. (1999). Novel anticancer drug discovery. Curr Opin Chem Biol 3, 500–509.

    PubMed  CAS  Google Scholar 

  50. Caligaris-Cappio, F. and Hamblin, T. J. (1999). B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 17, 399–408.

    PubMed  CAS  Google Scholar 

  51. Schimmer, A. D., Munk-Pedersen, I., Minden, M. D., and Reed, J. C. (2003). Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol 4, 211–218.

    PubMed  Google Scholar 

  52. Jewell, A. P. (2002). Role of apoptosis in the pathogenesis of B-cell chronic lymphocytic leukaemia. Br J Biomed Sci 59, 235–238.

    PubMed  Google Scholar 

  53. Schena, M., Gottardi, D., Ghia, P., Larsson, L. G., Carlsson, M., Nilsson, K., and Caligaris-Cappio, F. (1993). The role of Bcl-2 in the pathogenesis of B chronic lymphocytic leukemia. Leuk Lymphoma 11, 173–179.

    PubMed  CAS  Google Scholar 

  54. Hanada, M., Delia, D., Aiello, A., Stadtmauer, E., and Reed, J. (1993). C. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82, 1820–1828.

    PubMed  CAS  Google Scholar 

  55. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99, 15524–15529.

    PubMed  CAS  Google Scholar 

  56. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    PubMed  CAS  Google Scholar 

  57. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

    PubMed  CAS  Google Scholar 

  58. Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., Iuliano, R., Palumbo, T., Pichiorri, F., Roldo, C., Garzon, R., Sevignani, C., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. A (2005). MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353, 1793–1801.

    PubMed  CAS  Google Scholar 

  59. Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102, 13944–13949.

    PubMed  CAS  Google Scholar 

  60. Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton, A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C., and Golub, T. R. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8, 68–74.

    PubMed  CAS  Google Scholar 

  61. Derenne, S., Monia, B., Dean, N. M., Taylor, J. K., Rapp, M. J., Harousseau, J. L., Bataille, R., and Amiot, M. (2002). Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 100, 194–199.

    PubMed  CAS  Google Scholar 

  62. Berrieman, H. K., Smith, L., O’Kane, S. L., Campbell, A., Lind, M. J., and Cawkwell, L. (2005). The expression of Bcl-2 family proteins differs between nonsmall cell lung carcinoma subtypes. Cancer 103, 1415–1419.

    PubMed  CAS  Google Scholar 

  63. Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., Beroukhim, R., Milner, D. A., Granter, S. R., Du, J., Lee, C., Wagner, S. N., Li, C., Golub, T. R., Rimm, D. L., Meyerson, M. L., Fisher, D. E., and Sellers, W. R. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122.

    PubMed  CAS  Google Scholar 

  64. McGill, G. G., Horstmann, M., Widlund, H. R., Du, J., Motyckova, G., Nishimura, E. K., Lin, Y. L., Ramaswamy, S., Avery, W., Ding, H. F., Jordan, S. A., Jackson, I. J., Korsmeyer, S. J., Golub, T. R., and Fisher, D. E. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718.

    PubMed  CAS  Google Scholar 

  65. Thallinger, C., Wolschek, M. F., Wacheck, V., Maierhofer, H., Gunsberg, P., Polterauer, P., Pehamberger, H., Monia, B. P., Selzer, E., Wolff, K., and Jansen, B. (2003). Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol 120, 1081–1086.

    Google Scholar 

  66. Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., and Rickinson, A. (1993). Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA 90, 8479–8483.

    PubMed  CAS  Google Scholar 

  67. Cheng, E. H., Nicholas, J., Bellows, D. S., Hayward, G. S., Guo, H. G., Reitz, M. S., and Hardwick, J. M. (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94, 690–694.

    PubMed  CAS  Google Scholar 

  68. Gauthier, E. R., Piche, L., Lemieux, G., and Lemieux, R. (1996). Role of bcl-X(L) in the control of apoptosis in murine myeloma cells. Cancer Res 56, 1451–1456.

    PubMed  CAS  Google Scholar 

  69. Miguel-Garcia, A., Orero, T., Matutes, E., Carbonell, F., Miguel-Sosa, A., Linares, M., Tarin, F., Herrera, M., Garcia-Talavera, J., and Carbonell-Ramon, F. (1998). bcl-2 expression in plasma cells from neoplastic gammopathies and reactive plasmacytosis: a comparative study. Haematologica 83, 298–304.

    PubMed  CAS  Google Scholar 

  70. Jourdan, M., Veyrune, J. L., Vos, J. D., Redal, N., Couderc, G., and Klein, B. (2003). A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 22, 2950–2959.

    PubMed  CAS  Google Scholar 

  71. Zhang, B., Gojo, I., and Fenton, R. G. (2002). Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 99, 1885–1893.

    PubMed  CAS  Google Scholar 

  72. Green, D. R. and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1, 19–30.

    PubMed  CAS  Google Scholar 

  73. Hahn, W. C. and Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nat Rev Cancer 2, 331–341.

    PubMed  CAS  Google Scholar 

  74. Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., Joseph, M. K., Kitada, S., Korsmeyer, S. J., Kunzer, A. R., Letai, A., Li, C., Mitten, M. J., Nettesheim, D. G., Ng, S., Nimmer, P. M., O’Connor, J. M., Oleksijew, A., Petros, A. M., Reed, J. C., Shen, W., Tahir, S. K., Thompson, C. B., Tomaselli, K. J., Wang, B., Wendt, M. D., Zhang, H., Fesik, S. W., and Rosenberg, S. H. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681.

    PubMed  CAS  Google Scholar 

  75. Jansen, B., Schlagbauer-Wadl, H., Brown, B. D., Bryan, R. N., van Elsas, A., Muller, M., Wolff, K., Eichler, H. G., and Pehamberger, H. (1998). bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 4, 232–234.

    PubMed  CAS  Google Scholar 

  76. O’Brien, S. M., Cunningham, C. C., Golenkov, A. K., Turkina, A. G., Novick, S. C., and Rai, K. R. (2005). Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23, 7697–7702.

    PubMed  Google Scholar 

  77. Waters, J. S., Webb, A., Cunningham, D., Clarke, P. A., Raynaud, F., di Stefano, F., and Cotter, F. E. (2000). Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 18, 1812–1823.

    PubMed  CAS  Google Scholar 

  78. Konopleva, M., Tari, A. M., Estrov, Z., Harris, D., Xie, Z., Zhao, S., Lopez-Berestein, G., and Andreeff, M. (2000). Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 95, 3929–3938.

    PubMed  CAS  Google Scholar 

  79. Levin, V. A. (1980). Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23, 682–684.

    PubMed  CAS  Google Scholar 

  80. Begley, D. J. (1996). The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48, 136–146.

    PubMed  CAS  Google Scholar 

  81. Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L., and Korsmeyer, S. J. (2004). Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470.

    PubMed  CAS  Google Scholar 

  82. Service, R. F. (2000). Biochemistry. Protein arrays step out of DNA’s shadow. Science 289, 1673.

    PubMed  CAS  Google Scholar 

  83. Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.

    PubMed  CAS  Google Scholar 

  84. Levchenko, T. S., Rammohan, R., Volodina, N., and Torchilin, V. P. (2003). Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol 372, 339–349.

    PubMed  CAS  Google Scholar 

  85. Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., and Weissleder, R. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18, 410–414.

    PubMed  CAS  Google Scholar 

  86. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996). Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271, 18188–18193.

    PubMed  CAS  Google Scholar 

  87. Mi, Z., Mai, J., Lu, X., and Robbins, P. D. (2000). Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther 2, 339–347.

    PubMed  CAS  Google Scholar 

  88. Mann, D. A. and Frankel, A. D. (1991). Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10, 1733–1739.

    PubMed  CAS  Google Scholar 

  89. Schimmer, A. D., Hedley, D. W., Chow, S., Pham, N. A., Chakrabartty, A., Bouchard, D., Mak, T. W., Trus, M. R., and Minden, M. D. (2001). The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2. Cell Death Differ 8, 725–733.

    PubMed  CAS  Google Scholar 

  90. Goldsmith, K. C., Liu, X., Dam, V., Morgan, B. T., Shabbout, M., Cnaan, A., Letai, A., Korsmeyer, S. J., and Hogarty, M. D. (2006). BH3 peptidomimetics potently activate apoptosis and demonstrate single agent efficacy in neuroblastoma. Oncogene 25, 4525–33.

    PubMed  CAS  Google Scholar 

  91. Tomita, M., Hayashi, M., and Awazu, S. (1995). Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. J Pharmacol Exp Ther 272, 739–743.

    PubMed  CAS  Google Scholar 

  92. Vieira, H. L., Haouzi, D., Hamel, C. E., Jacotot, E., Belzacq, A., Brenner, C., and Kroemer, G. (2000). Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7, 1146–1154.

    PubMed  CAS  Google Scholar 

  93. Westerhoff, H. V., Juretic, D., Hendler, R. W., and Zasloff, M. (1989). Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86, 6597–6601.

    PubMed  CAS  Google Scholar 

  94. Ellerby, H. M., Arap, W., Ellerby, L. M., Kain, R., Andrusiak, R., Rio, G. D., Krajewski, S., Lombardo, C. R., Rao, R., Ruoslahti, E., Bredesen, D. E., and Pasqualini, R. (1999). Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5, 1032–1038.

    PubMed  CAS  Google Scholar 

  95. Matsuzaki, K. (2001). Why and how are peptide-lipid interactions utilized for self defence? Biochem Soc Trans 29, 598–601.

    PubMed  CAS  Google Scholar 

  96. Chin, J. W. and Schepartz, A. (2001). Design and evolution of a miniature Bcl-2 binding protein. Angew. Chem Int Ed 40, 3806–3809.

    CAS  Google Scholar 

  97. Yang, B., Liu, D., and Huang, Z. (2004). Synthesis and helical structure of lactam bridged BH3 peptides derived from pro-apoptotic Bcl-2 family proteins. Bioorg Med Chem Lett 14, 1403–1406.

    PubMed  CAS  Google Scholar 

  98. Wang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S., and Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97, 7124–7129.

    PubMed  CAS  Google Scholar 

  99. Enyedy, I. J., Ling, Y., Nacro, K., Tomita, Y., Wu, X., Cao, Y., Guo, R., Li, B., Zhu, X., Huang, Y., Long, Y. Q., Roller, P. P., Yang, D., and Wang, S. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44, 4313–4324.

    PubMed  CAS  Google Scholar 

  100. Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., and Yuan, J. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3, 173–182.

    PubMed  CAS  Google Scholar 

  101. Nakashima, T., Miura, M., and Hara, M. (2000). Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60, 1229–1235.

    PubMed  CAS  Google Scholar 

  102. Tzung, S. P., Kim, K. M., Basanez, G., Giedt, C. D., Simon, J., Zimmerberg, J., Zhang, K. Y., and Hockenbery, D. M. (2001). Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3, 183–191.

    PubMed  CAS  Google Scholar 

  103. Leone, M., Zhai, D., Sareth, S., Kitada, S., Reed, J. C., and Pellecchia, M. (2003). Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63, 8118–8121.

    PubMed  CAS  Google Scholar 

  104. Kitada, S., Leone, M., Sareth, S., Zhai, D., Reed, J. C., and Pellecchia, M. (2003). Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 46, 4259–4264.

    PubMed  CAS  Google Scholar 

  105. Becattini, B., Kitada, S., Leone, M., Monosov, E., Chandler, S., Zhai, D., Kipps, T. J., Reed, J. C., and Pellecchia, M. (2004). Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 11, 389–395.

    PubMed  CAS  Google Scholar 

  106. Shore, G. C. and Viallet, J. (2005). Modulating the bcl-2 family of apoptosis suppressors for potential therapeutic benefit in cancer. Hematology (Am Soc Hematol Educ Program) 226–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Moore, V.D.G., Letai, A. (2008). Rational Design of Therapeutics Targeting the BCL-2 Family: Are Some Cancer Cells Primed for Death but Waiting for a Final Push?. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_8

Download citation

Publish with us

Policies and ethics