Skip to main content

Apoptotic Pathways in Tumor Progression and Therapy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

Apoptosis is a cell suicide program that plays a critical role in development and tissue homeostasis. The ability of cancer cells to evade this programmed cell death (PCD) is a major characteristic that enables their uncontrolled growth. The efficiency of chemotherapy in killing such cells depends on the successful induction of apoptosis, since defects in apoptosis signaling are a major cause of drug resistance. Over the past decades, much progress has been made in our understanding of apoptotic signaling pathways and their dysregulation in cancer progression and therapy. These advances have provided new molecular targets for proapoptotic cancer therapies that have recently been used in drug development. While most of those therapies are still at the preclinical stage, some of them have shown much promise in the clinic. Here, we review our current knowledge of apoptosis regulation in cancer progression and therapy, as well as the new molecular targeted molecules that are being developed to reinstate cancer cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnsen, H., Varhaug, J. E., Akslen, L. A., and Lonning, P. E. (1996). Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2, 811–814.

    CAS  PubMed  Google Scholar 

  • Abe, K., Kurakin, A., Mohseni-Maybodi, M., Kay, B., and Khosravi-Far, R. (2000a). The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci, 926, 52–63.

    CAS  PubMed  Google Scholar 

  • Abe, K., Kurakin, A., Mohseni-Maybodi, M., Kay, B., and Khosravi-Far, R. (2000b). The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci 926, 52–63.

    CAS  PubMed  Google Scholar 

  • Adams, J. (2003). The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 (Suppl 1), 3–9.

    CAS  PubMed  Google Scholar 

  • Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4, 349–360.

    CAS  PubMed  Google Scholar 

  • Adams, J. and Kauffman, M. (2004). Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22, 304–311.

    CAS  PubMed  Google Scholar 

  • Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14, 715–720.

    CAS  PubMed  Google Scholar 

  • Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., Palmiter, R. D., and Brinster, R. L. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538.

    CAS  PubMed  Google Scholar 

  • Aichberger, K. J., Mayerhofer, M., Krauth, M. T., Skvara, H., Florian, S., Sonneck, K., Akgul, C., Derdak, S., Pickl, W. F., Wacheck, V., et al. (2005). Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 105, 3303–3311.

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich, A., Shen, L., Barnhart, B. C., Murmann, A. E., Burkhardt, J. K., and Peter, M. E. (2002). Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22, 207–220.

    CAS  PubMed  Google Scholar 

  • Alitalo, K. and Schwab, M. (1986). Oncogene amplification in tumor cells. Advances in Cancer Research 47, 235–281.

    CAS  PubMed  Google Scholar 

  • Almasan, A. and Ashkenazi, A. (2003). Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14, 337–348.

    CAS  PubMed  Google Scholar 

  • Amantana, A., London, C. A., Iversen, P. L., and Devi, G. R. (2004). X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3, 699–707.

    CAS  PubMed  Google Scholar 

  • Amundson, S. A., Myers, T. G., Scudiero, D., Kitada, S., Reed, J. C., and Fornace, A. J., Jr. (2000). An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60, 6101–6110.

    CAS  PubMed  Google Scholar 

  • Appels, N. M., Beijnen, J. H., and Schellens, J. H. (2005). Development of farnesyl transferase inhibitors: a review. Oncologist 10, 565–578.

    PubMed  Google Scholar 

  • Arlt, A. and Schafer, H. (2002). NFkappaB-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther 40, 336–347.

    CAS  PubMed  Google Scholar 

  • Arvanitis, C. and Felsher, D. W. (2006). Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 16, 313–317.

    CAS  PubMed  Google Scholar 

  • Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305–1308.

    CAS  PubMed  Google Scholar 

  • Ashkenazi, A. and Dixit, V. M. (1999). Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255–260.

    CAS  PubMed  Google Scholar 

  • Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., McMurtrey, A. E., Hebert, A., et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104, 155–162.

    CAS  PubMed  Google Scholar 

  • Baldwin, A. S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107, 241–246.

    CAS  PubMed  Google Scholar 

  • Baliga, B. and Kumar, S. (2003). Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ 10, 16–18.

    CAS  PubMed  Google Scholar 

  • Banerji, U., O’Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Maloney, A., Raynaud, F., Campbell, M., et al. (2005). Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23, 4152–4161.

    CAS  PubMed  Google Scholar 

  • Bedi, A., Zehnbauer, B. A., Barber, J. P., Sharkis, S. J., and Jones, R. J. (1994). Inhibition of apoptosis by Bcr-Abl in chronic myeloid leukemia. Blood 83, 2038–2044.

    CAS  PubMed  Google Scholar 

  • Bhatia, R., Holtz, M., Niu, N., Gray, R., Snyder, D. S., Sawyers, C. L., Arber, D. A., Slovak, M. L., and Forman, S. J. (2003). Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (epub 2003 Feb 4706).

    Google Scholar 

  • Bissonnette, R. P., Echeverri, F., Mahboubi, A., and Green, D. R. (1992). Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554.

    CAS  PubMed  Google Scholar 

  • Blagosklonny, M. V. (2001). Paradox of Bcl-2 (and p53): why may apoptosis-regulating proteins be irrelevant to cell death? Bioessays 23, 947–953.

    CAS  PubMed  Google Scholar 

  • Blagosklonny, M. V. (2002). P53: an ubiquitous target of anticancer drugs. Int J Cancer 98, 161–166.

    CAS  PubMed  Google Scholar 

  • Blume-Jensen, P. and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355–365.

    CAS  PubMed  Google Scholar 

  • Boatright, K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., Ricci, J. E., Edris, W. A., Sutherlin, D. P., Green, D. R., and Salvesen, G. S. (2003). A unified model for apical caspase activation. Mol Cell 11, 529–541.

    CAS  PubMed  Google Scholar 

  • Bouchier-Hayes, L., Lartigue, L., and Newmeyer, D. D. (2005). Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115, 2640–2647.

    CAS  PubMed  Google Scholar 

  • Bouillet, P., Huang, D. C., O’Reilly, L. A., Puthalakath, H., O’Connor, L., Cory, S., Adams, J. M., and Strasser, A. (2000). The role of the pro-apoptotic Bcl-2 family member bim in physiological cell death. Ann N Y Acad Sci 926, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Boxer, R. B., Jang, J. W., Sintasath, L., and Chodosh, L. A. (2004). Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586.

    CAS  PubMed  Google Scholar 

  • Broker, L. E., Huisman, C., Span, S. W., Rodriguez, J. A., Kruyt, F. A., and Giaccone, G. (2004). Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 64, 27–30.

    PubMed  Google Scholar 

  • Bucur, O., Ray, S., Bucur, M. C., and Almasan, A. (2006). APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 11, 1549–1568.

    CAS  PubMed  Google Scholar 

  • Burns, T. F. and el-Deiry, W. S. (2003). Cell death signaling in maligancy. Cancer Treat Res 115, 319–343.

    CAS  PubMed  Google Scholar 

  • Bursch, W., Ellinger, A., Kienzl, H., Torok, L., Pandey, S., Sikorska, M., Walker, R., and Hermann, R. S. (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595–1607.

    CAS  PubMed  Google Scholar 

  • Bykov, V. J., Selivanova, G., and Wiman, K. G. (2003). Small molecules that reactivate mutant p53. Eur J Cancer 39, 1828–1834.

    CAS  PubMed  Google Scholar 

  • Cain, K., Bratton, S. B., and Cohen, G. M. (2002). The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214.

    CAS  PubMed  Google Scholar 

  • Calvisi, D. F., Ladu, S., Factor, V. M., and Thorgeirsson, S. S. (2004). Activation of beta-catenin provides proliferative and invasive advantages in c-myc/TGF-alpha hepatocarcinogenesis promoted by phenobarbital. Carcinogenesis 25, 901–908.

    CAS  PubMed  Google Scholar 

  • Carlesso, N., Frank, D. A., and Griffin, J. D. (1996). Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 183, 811–820.

    CAS  PubMed  Google Scholar 

  • Carlesso, N., Griffin, J. D., and Druker, B. J. (1994). Use of a temperature-sensitive mutant to define the biological effects of the p210Bcr-Abl tyrosine kinase on proliferation of a factor-dependent murine myeloid cell line. Oncogene 9, 149–156.

    CAS  PubMed  Google Scholar 

  • Chevallier, P., Robillard, N., Wuilleme-Toumi, S., Mechinaud, F., Harousseau, J. L., and Avet-Loiseau, H. (2004). Overexpression of Her2/neu is observed in one third of adult acute lymphoblastic leukemia patients and is associated with chemoresistance in these patients. Haematologica 89, 1399–1401.

    PubMed  Google Scholar 

  • Chinnaiyan, A. M. (1999). The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5–15.

    CAS  PubMed  Google Scholar 

  • Chuang, S. E., Yeh, P. Y., Lu, Y. S., Lai, G. M., Liao, C. M., Gao, M., and Cheng, A. L. (2002). Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63, 1709–1716.

    CAS  PubMed  Google Scholar 

  • Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J 326 (Pt 1), 1–16.

    CAS  PubMed  Google Scholar 

  • Cortez, D., Stoica, G., Pierce, J. H., and Pendergast, A. M. (1996). The Bcr-Abl tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13, 2589–2594.

    CAS  PubMed  Google Scholar 

  • Cory, S. and Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647–656.

    CAS  PubMed  Google Scholar 

  • Costantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92, 1042–1053.

    CAS  PubMed  Google Scholar 

  • Croxton, R., Ma, Y., Song, L., Haura, E. B., and Cress, W. D. (2002). Direct repression of the Mcl-1 promoter by E2F1. Oncogene 21, 1359–1369.

    CAS  PubMed  Google Scholar 

  • D’Cruz, C. M., Gunther, E. J., Boxer, R. B., Hartman, J. L., Sintasath, L., Moody, S. E., Cox, J. D., Ha, S. I., Belka, G. K., Golant, A., et al. (2001). c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Medicine 7, 235–239.

    Google Scholar 

  • Dagher, R., Cohen, M., Williams, G., Rothmann, M., Gobburu, J., Robbie, G., Rahman, A., Chen, G., Staten, A., Griebel, D., and Pazdur, R. (2002). Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8, 3034–3038.

    CAS  PubMed  Google Scholar 

  • Dang, C. V. (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19, 1–11.

    CAS  PubMed  Google Scholar 

  • Daniel, P. T., Wieder, T., Sturm, I., and Schulze-Osthoff, K. (2001). The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15, 1022–1032.

    CAS  PubMed  Google Scholar 

  • De Marinis, F., De Santis, S., and De Petris, L. (2006). Second-line chemotherapy for non-small cell lung cancer. Ann Oncol 17 (Suppl 5), v68–v71.

    PubMed  Google Scholar 

  • Debatin, K. M. and Krammer, P. H. (2004). Death receptors in chemotherapy and cancer. Oncogene 23, 2950–2966.

    CAS  PubMed  Google Scholar 

  • Debatin, K. M., Poncet, D., and Kroemer, G. (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21, 8786–8803.

    CAS  PubMed  Google Scholar 

  • Degli Esposti, M. (1999). To die or not to die–the quest of the TRAIL receptors. J Leukoc Biol 65, 535–542.

    CAS  PubMed  Google Scholar 

  • Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., and Yuan, J. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3, 173–182.

    CAS  PubMed  Google Scholar 

  • Deininger, M., Buchdunger, E., and Druker, B. J. (2005). The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (epub 2004 Dec 2623).

    Google Scholar 

  • Demoy, M., Minko, T., Kopeckova, P., and Kopecek, J. (2000). Time- and concentration-dependent apoptosis and necrosis induced by free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. J Control Release 69, 185–196.

    CAS  PubMed  Google Scholar 

  • Dempke, W., Voigt, W., Grothey, A., Hill, B. T., and Schmoll, H. J. (2000). Cisplatin resistance and oncogenes–a review. Anticancer Drugs 11, 225–236.

    CAS  PubMed  Google Scholar 

  • Devarajan, E., Sahin, A. A., Chen, J. S., Krishnamurthy, R. R., Aggarwal, N., Brun, A. M., Sapino, A., Zhang, F., Sharma, D., Yang, X. H., et al. (2002). Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21, 8843–8851.

    CAS  PubMed  Google Scholar 

  • Dias, N. and Bailly, C. (2005). Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70, 1–12.

    CAS  PubMed  Google Scholar 

  • Dole, M., Nunez, G., Merchant, A. K., Maybaum, J., Rode, C. K., Bloch, C. A., and Castle, V. P. (1994). Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 54, 3253–3259.

    CAS  PubMed  Google Scholar 

  • Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2, 561–566.

    CAS  PubMed  Google Scholar 

  • Dudkin, L., Dilling, M. B., Cheshire, P. J., Harwood, F. C., Hollingshead, M., Arbuck, S. G., Travis, R., Sausville, E. A., and Houghton, P. J. (2001). Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 7, 1758–1764.

    CAS  PubMed  Google Scholar 

  • Egan, L. J., Eckmann, L., Greten, F. R., Chae, S., Li, Z. W., Myhre, G. M., Robine, S., Karin, M., and Kagnoff, M. F. (2004). IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci USA 101, 2452–2457.

    CAS  PubMed  Google Scholar 

  • Emanuel, P. D., Bates, L. J., Castleberry, R. P., Gualtieri, R. J., and Zuckerman, K. S. (1991). Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77, 925–929.

    CAS  PubMed  Google Scholar 

  • Emens, L. A. (2005). Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am J Ther 12, 243–253.

    Google Scholar 

  • Eng, C. P., Sehgal, S. N., and Vezina, C. (1984). Activity of rapamycin (AY-22, 989) against transplanted tumors. J Antibiot (Tokyo) 37, 1231–1237.

    CAS  Google Scholar 

  • Enyedy, I. J., Ling, Y., Nacro, K., Tomita, Y., Wu, X., Cao, Y., Guo, R., Li, B., Zhu, X., Huang, Y., et al. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44, 4313–4324.

    CAS  PubMed  Google Scholar 

  • Erster, S. and Moll, U. M. (2005). Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 331, 843–850.

    CAS  PubMed  Google Scholar 

  • Esposti, M. D., Cristea, I. M., Gaskell, S. J., Nakao, Y., and Dive, C. (2003). Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10, 1300–1309.

    CAS  PubMed  Google Scholar 

  • Evan, G. I. and Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348.

    CAS  PubMed  Google Scholar 

  • Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., and Hancock, D. C. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128.

    CAS  PubMed  Google Scholar 

  • Fan, J., Banerjee, D., Stambrook, P. J., and Bertino, J. R. (1997). Modulation of cytotoxicity of chemotherapeutic drugs by activated H-ras. Biochem Pharmacol 53, 1203–1209.

    CAS  PubMed  Google Scholar 

  • Fanidi, A., Harrington, E. A., and Evan, G. I. (1992). Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556.

    CAS  PubMed  Google Scholar 

  • Felsher, D. W. and Bishop, J. M. (1999). Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96, 3940–3944.

    CAS  PubMed  Google Scholar 

  • Fernandez, P. C., Frank, S. R., Wang, L., Schroeder, M., Liu, S., Greene, J., Cocito, A., and Amati, B. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17, 1115–1129.

    CAS  PubMed  Google Scholar 

  • Fesik, S. W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5, 876–885.

    CAS  PubMed  Google Scholar 

  • Finnberg, N. and El-Deiry, W. S. (2004). Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther. 3, 614–616 (epub 2004 July 2024).

    Google Scholar 

  • Foster, B. A., Coffey, H. A., Morin, M. J., and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510.

    CAS  PubMed  Google Scholar 

  • Friesen, C., Fulda, S., and Debatin, K. M. (1997). Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia 11, 1833–1841.

    CAS  PubMed  Google Scholar 

  • Fujita, T., Washio, K., Takabatake, D., Takahashi, H., Yoshitomi, S., Tsukuda, K., Ishibe, Y., Ogasawara, Y., Doihara, H., and Shimizu, N. (2005). Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance. Int. J Cancer 117, 670–682.

    Google Scholar 

  • Fulda, S. and Debatin, K. M. (2000). Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 35, 616–618.

    CAS  PubMed  Google Scholar 

  • Fulda, S., Friesen, C., and Debatin, K. M. (1998a). Molecular determinants of apoptosis induced by cytotoxic drugs. Klin Padiatr 210, 148–152.

    CAS  PubMed  Google Scholar 

  • Fulda, S., Los, M., Friesen, C., and Debatin, K. M. (1998b). Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 76, 105–114.

    CAS  PubMed  Google Scholar 

  • Fulda, S., Kufer, M. U., Meyer, E., van Valen, F., Dockhorn-Dworniczak, B., and Debatin, K. M. (2001a). Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20, 5865–5877.

    CAS  PubMed  Google Scholar 

  • Fulda, S., Meyer, E., Friesen, C., Susin, S. A., Kroemer, G., and Debatin, K. M. (2001b). Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20, 1063–1075.

    CAS  PubMed  Google Scholar 

  • Fulda, S., Wick, W., Weller, M., and Debatin, K. M. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8, 808–815 (epub 2002 July 2015).

    Google Scholar 

  • Furukawa, Y., Nishimura, N., Satoh, M., Endo, H., Iwase, S., Yamada, H., Matsuda, M., Kano, Y., and Nakamura, M. (2002). Apaf-1 is a mediator of E2F–1-induced apoptosis. J Biol Chem 277, 39760–39768 (epub 32002 July 39730).

    Google Scholar 

  • Gambacorti-Passerini, C., le Coutre, P., Mologni, L., Fanelli, M., Bertazzoli, C., Marchesi, E., Di Nicola, M., Biondi, A., Corneo, G. M., Belotti, D., et al. (1997). Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL + leukemic cells and induces apoptosis. Blood Cells Mol Dis 23, 380–394.

    CAS  PubMed  Google Scholar 

  • Gesbert, F. and Griffin, J. D. (2000). Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96, 2269–2276.

    CAS  PubMed  Google Scholar 

  • Geske, F. J. and Gerschenson, L. E. (2001). The biology of apoptosis. Hum Pathol 32, 1029–1038.

    CAS  PubMed  Google Scholar 

  • Ghaffari, S., Jagani, Z., Kitidis, C., Lodish, H. F., and Khosravi-Far, R. (2003). Cytokines and Bcr-Abl mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proc Natl Acad Sci USA 100, 6523–6528.

    CAS  PubMed  Google Scholar 

  • Gilley, J., Coffer, P. J., and Ham, J. (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162, 613–622.

    CAS  PubMed  Google Scholar 

  • Giodini, A., Kallio, M. J., Wall, N. R., Gorbsky, G. J., Tognin, S., Marchisio, P. C., Symons, M., and Altieri, D. C. (2002). Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 62, 2462–2467.

    CAS  PubMed  Google Scholar 

  • Gonda, T. J., Sheiness, D. K., and Bishop, J. M. (1982). Transcripts from the cellular homologs of retroviral oncogenes: distribution among chicken tissues. Mol Cell Biol 2, 617–624.

    CAS  PubMed  Google Scholar 

  • Gong, B. and Almasan, A. (2000). Genomic organization and transcriptional regulation of human Apo2/TRAIL gene. Biochem Biophys Res Commun 278, 747–752.

    CAS  PubMed  Google Scholar 

  • Gourdier, I., Del Rio, M., Crabbe, L., Candeil, L., Copois, V., Ychou, M., Auffray, C., Martineau, P., Mechti, N., Pommier, Y., and Pau, B. (2002). Drug specific resistance to oxaliplatin is associated with apoptosis defect in a cellular model of colon carcinoma. FEBS Lett 529, 232–236.

    CAS  PubMed  Google Scholar 

  • Gozuacik, D. and Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906.

    CAS  PubMed  Google Scholar 

  • Green, D. R. and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1, 19–30.

    CAS  PubMed  Google Scholar 

  • Green, D. R. and Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626–629.

    CAS  PubMed  Google Scholar 

  • Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274, 1156–1163.

    CAS  PubMed  Google Scholar 

  • Gudas, J. M., Nguyen, H., Li, T., Sadzewicz, L., Robey, R., Wosikowski, K., and Cowan, K. H. (1996). Drug-resistant breast cancer cells frequently retain expression of a functional wild-type p53 protein. Carcinogenesis 17, 1417–1427.

    CAS  PubMed  Google Scholar 

  • Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    CAS  PubMed  Google Scholar 

  • Harada, T., Ogura, S., Yamazaki, K., Kinoshita, I., Itoh, T., Isobe, H., Yamashiro, K., Dosaka-Akita, H. and Nishimura, M. (2003). Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci 94, 394–399.

    CAS  PubMed  Google Scholar 

  • Harris, A. W., Pinkert, C. A., Crawford, M., Langdon, W. Y., Brinster, R. L., and Adams, J. M. (1988). The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167, 353–371.

    CAS  PubMed  Google Scholar 

  • Heath, E. I., Gaskins, M., Pitot, H. C., Pili, R., Tan, W., Marschke, R., Liu, G., Hillman, D., Sarkar, F., Sheng, S., et al. (2005). A phase II trial of 17-allylamino-17- demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Prostate Cancer 4, 138–141.

    CAS  PubMed  Google Scholar 

  • Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., and Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4, 988–1004.

    CAS  PubMed  Google Scholar 

  • Herr, I. and Debatin, K. M. (2001). Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603–2614.

    CAS  PubMed  Google Scholar 

  • Hickman, J. A. (2002). Apoptosis and tumourigenesis. Curr Opin Genet Dev 12, 67–72.

    CAS  PubMed  Google Scholar 

  • Hill, M. M., Adrain, C., and Martin, S. J. (2003). Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol Interv 3, 19–26.

    CAS  PubMed  Google Scholar 

  • Hirsimaki, Y. and Hirsimaki, P. (1984). Vinblastine-induced autophagocytosis: the effect of disorganization of microfilaments by cytochalasin B. Exp Mol Pathol 40, 61–69.

    CAS  PubMed  Google Scholar 

  • Horvitz, H. R. (1999). Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59, 1701s–1706s.

    Google Scholar 

  • Hu, M. C., Lee, D. F., Xia, W., Golfman, L. S., Ou-Yang, F., Yang, J. Y., Zou, Y., Bao, S., Hanada, N., Saso, H., et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237.

    Google Scholar 

  • Huang, Y., Lu, M., and Wu, H. (2004). Antagonizing XIAP-mediated caspase-3 inhibition. Achilles’ heel of cancers? Cancer Cell 5, 1–2.

    CAS  PubMed  Google Scholar 

  • Hutchinson, J. N. and Muller, W. J. (2000). Transgenic mouse models of human breast cancer. Oncogene 19, 6130–6137.

    CAS  PubMed  Google Scholar 

  • Ilaria, R. L., Jr. and Van Etten, R. A. (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271, 31704–31710.

    CAS  PubMed  Google Scholar 

  • Ingvarsson, S. (1990). The myc gene family proteins and their role in transformation and differentiation. Semin Cancer Biol 1, 359–369.

    CAS  PubMed  Google Scholar 

  • Ionov, Y., Yamamoto, H., Krajewski, S., Reed, J. C., and Perucho, M. (2000). Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97, 10872–10877.

    CAS  PubMed  Google Scholar 

  • Irwin, M. S., Kondo, K., Marin, M. C., Cheng, L. S., Hahn, W. C., and Kaelin, W. G., Jr. (2003). Chemosensitivity linked to p73 function. Cancer Cell 3, 403–410.

    CAS  PubMed  Google Scholar 

  • Jansen, B., Schlagbauer-Wadl, H., Eichler, H. G., Wolff, K., van Elsas, A., Schrier, P. I., and Pehamberger, H. (1997). Activated N-ras contributes to the chemoresistance of human melanoma in severe combined immunodeficiency (SCID) mice by blocking apoptosis. Cancer Res 57, 362–365.

    CAS  PubMed  Google Scholar 

  • Jansen, B., Wacheck, V., Heere-Ress, E., Schlagbauer-Wadl, H., Hoeller, C., Lucas, T., Hoermann, M., Hollenstein, U., Wolff, K., and Pehamberger, H. (2000). Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733.

    CAS  PubMed  Google Scholar 

  • Johnstone, R. W., Ruefli, A. A., and Lowe, S. W. (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164.

    CAS  PubMed  Google Scholar 

  • Kabarowski, J. H., Allen, P. B., and Wiedemann, L. M. (1994). A temperature sensitive p210 Bcr-Abl mutant defines the primary consequences of Bcr-Abl tyrosine kinase expression in growth factor dependent cells. EMBO J 13, 5887–5895.

    CAS  PubMed  Google Scholar 

  • Kagawa, S., Gu, J., Swisher, S. G., Ji, L., Roth, J. A., Lai, D., Stephens, L. C., and Fang, B. (2000). Antitumor effect of adenovirus-mediated Bax gene transfer on p53-sensitive and p53-resistant cancer lines. Cancer Res 60, 1157–1161.

    CAS  PubMed  Google Scholar 

  • Kaliberov, S. A., Buchsbaum, D. J., Gillespie, G. Y., Curiel, D. T., Arafat, W. O., Carpenter, M., and Stackhouse, M. A. (2002). Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 6, 190–198.

    CAS  PubMed  Google Scholar 

  • Kamesaki, S., Kamesaki, H., Jorgensen, T. J., Tanizawa, A., Pommier, Y., and Cossman, J. (1993). bcl-2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerase II-induced DNA strand breaks and their repair. Cancer Res 53, 4251–4256.

    CAS  PubMed  Google Scholar 

  • Kanzawa, T., Germano, I. M., Komata, T., Ito, H., Kondo, Y., and Kondo, S. (2004). Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11, 448–457.

    CAS  PubMed  Google Scholar 

  • Kasibhatla, S., Brunner, T., Genestier, L., Echeverri, F., Mahboubi, A., and Green, D. R. (1998). DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1, 543–551.

    CAS  PubMed  Google Scholar 

  • Kau, T. R., Schroeder, F., Ramaswamy, S., Wojciechowski, C. L., Zhao, J. J., Roberts, T. M., Clardy, J., Sellers, W. R., and Silver, P. A. (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer cell 4, 463–476.

    CAS  PubMed  Google Scholar 

  • Kaufmann, S. H. and Earnshaw, W. C. (2000). Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256, 42–49.

    CAS  PubMed  Google Scholar 

  • Keeshan, K., Mills, K. I., Cotter, T. G., and McKenna, S. L. (2001). Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 15, 1823–1833.

    CAS  PubMed  Google Scholar 

  • Kelly, W. K., O’Connor, O. A., Krug, L. M., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., Schwartz, L., et al. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23, 3923–3931 (epub 2005 May 3916).

    Google Scholar 

  • Khosravi-Far, R., Campbell, S., Rossman, K. L., and Der, C. J. (1998). Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res 72, 57–107.

    CAS  PubMed  Google Scholar 

  • Khosravi-Far, R. and Der, C. J. (1994). The Ras signal transduction pathway. Cancer Metastasis Rev 13, 67–89.

    CAS  PubMed  Google Scholar 

  • Kim, D., Dan, H. C., Park, S., Yang, L., Liu, Q., Kaneko, S., Ning, J., He, L., Yang, H., Sun, M., et al. (2005). AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci 10, 975–987 (print 2005 Jan 2001).

    Google Scholar 

  • Kim, R., Emi, M., Tanabe, K., and Toge, T. (2004). Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 101, 2491–2502.

    CAS  PubMed  Google Scholar 

  • Kim, R., Emi, M., Tanabe, K., Uchida, Y., and Arihiro, K. (2006). The role of apoptotic or nonapoptotic cell death in determining cellular response to anticancer treatment. Eur J Surg Oncol 20, 20.

    Google Scholar 

  • Kim, R., Tanabe, K., Emi, M., Uchida, Y., Inoue, H., and Toge, T. (2003). Inducing cancer cell death by targeting transcription factors. Anticancer Drugs 14, 3–11.

    CAS  PubMed  Google Scholar 

  • Kirkin, V., Joos, S., and Zornig, M. (2004). The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644, 229–249.

    CAS  PubMed  Google Scholar 

  • Klasa, R. J., Gillum, A. M., Klem, R. E., and Frankel, S. R. (2002). Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 12, 193–213.

    CAS  PubMed  Google Scholar 

  • Knies-Bamforth, U. E., Fox, S. B., Poulsom, R., Evan, G. I., and Harris, A. L. (2004). c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res 64, 6563–6570.

    CAS  PubMed  Google Scholar 

  • Knuefermann, C., Lu, Y., Liu, B., Jin, W., Liang, K., Wu, L., Schmidt, M., Mills, G. B., Mendelsohn, J., and Fan, Z. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22, 3205–3212.

    CAS  PubMed  Google Scholar 

  • Kondo, Y., Kanzawa, T., Sawaya, R., and Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5, 726–734.

    CAS  PubMed  Google Scholar 

  • Kostanova-Poliakova, D. and Sabova, L. (2005). Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 52, 441–449.

    CAS  PubMed  Google Scholar 

  • Koturbash, I., Rugo, R. E., Hendricks, C. A., Loree, J., Thibault, B., Kutanzi, K., Pogribny, I., Yanch, J. C., Engelward, B. P., and Kovalchuk, O. (2006). Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25, 4267–4275.

    CAS  PubMed  Google Scholar 

  • Kroemer, G. (2003). Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304, 433–435.

    CAS  PubMed  Google Scholar 

  • Kutzki, O., Park, H. S., Ernst, J. T., Orner, B. P., Yin, H., and Hamilton, A. D. (2002). Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124, 11838–11839.

    CAS  PubMed  Google Scholar 

  • Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342.

    Google Scholar 

  • Lawen, A. (2003). Apoptosis-an introduction. Bioessays 25, 888–896.

    CAS  PubMed  Google Scholar 

  • le Coutre, P., Mologni, L., Cleris, L., Marchesi, E., Buchdunger, E., Giardini, R., Formelli, F., and Gambacorti-Passerini, C. (1999). In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91, 163–168.

    PubMed  Google Scholar 

  • Letai, A., Sorcinelli, M. D., Beard, C., and Korsmeyer, S. J. (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6, 241–249.

    CAS  PubMed  Google Scholar 

  • Levine, A. J., Finlay, C. A., and Hinds, P. W. (2004). P53 is a tumor suppressor gene. Cell 116, S67–S69, 61 p following S69.

    Google Scholar 

  • Levy, E., Baroche, C., Barret, J. M., Alapetite, C., Salles, B., Averbeck, D., and Moustacchi, E. (1994). Activated ras oncogene and specifically acquired resistance to cisplatin in human mammary epithelial cells: induction of DNA cross-links and their repair. Carcinogenesis 15, 845–850.

    CAS  PubMed  Google Scholar 

  • Li, H. and Yuan, J. (1999). Deciphering the pathways of life and death. Curr Opin Cell Biol 11, 261–266.

    CAS  PubMed  Google Scholar 

  • Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    CAS  PubMed  Google Scholar 

  • Lima, R. T., Martins, L. M., Guimaraes, J. E., Sambade, C., and Vasconcelos, M. H. (2004). Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 11, 309–316.

    CAS  PubMed  Google Scholar 

  • Lin, W. C., Lin, F. T., and Nevins, J. R. (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15, 1833–1844.

    CAS  PubMed  Google Scholar 

  • Longley, D. B. and Johnston, P. G. (2005). Molecular mechanisms of drug resistance. J Pathol 205, 275–292.

    CAS  PubMed  Google Scholar 

  • Longley, D. B., Wilson, T. R., McEwan, M., Allen, W. L., McDermott, U., Galligan, L., and Johnston, P. G. (2006). c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25, 838–848.

    CAS  PubMed  Google Scholar 

  • Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., and Jacks, T. (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810.

    CAS  PubMed  Google Scholar 

  • Lowe, S. W., Cepero, E., and Evan, G. (2004). Intrinsic tumour suppression. Nature 432, 307–315.

    CAS  PubMed  Google Scholar 

  • Lowe, S. W. and Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis 21, 485–495.

    CAS  PubMed  Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    CAS  PubMed  Google Scholar 

  • Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14, 35–48.

    PubMed  Google Scholar 

  • Luu, Y., Bush, J., Cheung, K. J., Jr., and Li, G. (2002). The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res 276, 214–222.

    CAS  PubMed  Google Scholar 

  • Marchenko, N. D., Zaika, A., and Moll, U. M. (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275, 16202–16212.

    CAS  PubMed  Google Scholar 

  • Martelli, A. M., Tabellini, G., Bortul, R., Tazzari, P. L., Cappellini, A., Billi, A. M., and Cocco, L. (2005). Involvement of the phosphoinositide 3-kinase/Akt signaling pathway in the resistance to therapeutic treatments of human leukemias. Histol Histopathol 20, 239–252.

    CAS  PubMed  Google Scholar 

  • McCormick, F. (2004). Cancer: survival pathways meet their end. Nature 428, 267–269.

    CAS  PubMed  Google Scholar 

  • McGahon, A., Bissonnette, R., Schmitt, M., Cotter, K. M., Green, D. R., and Cotter, T. G. (1994). Bcr-Abl maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83, 1179–1187.

    CAS  PubMed  Google Scholar 

  • McManus, D. C., Lefebvre, C. A., Cherton-Horvat, G., St-Jean, M., Kandimalla, E. R., Agrawal, S., Morris, S. J., Durkin, J. P., and Lacasse, E. C. (2004). Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23, 8105–8117.

    CAS  PubMed  Google Scholar 

  • Meek, D. W. (2004). The p53 response to DNA damage. DNA Repair (Amst) 3, 1049–1056.

    CAS  Google Scholar 

  • Mendelsohn, J. and Fan, Z. (1997). Epidermal growth factor receptor family and chemosensitization. J Natl Cancer Inst 89, 341–343.

    CAS  PubMed  Google Scholar 

  • Mesner, P. W., Jr., Budihardjo, II, and Kaufmann, S. H. (1997). Chemotherapy-induced apoptosis. Adv Pharmacol 41, 461–499.

    CAS  PubMed  Google Scholar 

  • Michalak, E., Villunger, A., Erlacher, M., and Strasser, A. (2005). Death squads enlisted by the tumour suppressor p53. Biochem Biophys Res Commun 331, 786–798.

    CAS  PubMed  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577–590.

    CAS  PubMed  Google Scholar 

  • Minucci, S. and Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6, 38–51.

    CAS  PubMed  Google Scholar 

  • Miyashita, T. and Reed, J. C. (1992). bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52, 5407–5411.

    CAS  PubMed  Google Scholar 

  • Modur, V., Nagarajan, R., Evers, B. M., and Milbrandt, J. (2002). FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277, 47928–47937.

    CAS  PubMed  Google Scholar 

  • Morgensztern, D. and McLeod, H. L. (2005). PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16, 797–803.

    CAS  PubMed  Google Scholar 

  • Moroni, M. C., Hickman, E. S., Lazzerini Denchi, E., Caprara, G., Colli, E., Cecconi, F., Muller, H., and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3, 552–558.

    CAS  PubMed  Google Scholar 

  • Nagane, M., Levitzki, A., Gazit, A., Cavenee, W. K., and Huang, H. J. (1998). Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA95, 5724–5729.

    Google Scholar 

  • Nahle, Z., Polakoff, J., Davuluri, R. V., McCurrach, M. E., Jacobson, M. D., Narita, M., Zhang, M. Q., Lazebnik, Y., Bar-Sagi, D., and Lowe, S. W. (2002). Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4, 859–864.

    CAS  PubMed  Google Scholar 

  • Nakanishi, C. and Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5, 297–309.

    CAS  PubMed  Google Scholar 

  • Nelson, D. A. and White, E. (2004). Exploiting different ways to die. Genes Dev 18, 1223–1226.

    CAS  PubMed  Google Scholar 

  • Newmeyer, D. D. and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490.

    CAS  PubMed  Google Scholar 

  • Nguyen, D. M., Chen, G. A., Reddy, R., Tsai, W., Schrump, W. D., Cole, G., Jr., and Schrump, D. S. (2004). Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J Thorac Cardiovasc Surg 127, 365–375.

    Google Scholar 

  • Nicholson, K. M., Quinn, D. M., Kellett, G. L., and Warr, J. R. (2003). LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett 190, 31–36.

    CAS  PubMed  Google Scholar 

  • Nieborowska-Skorska, M., Wasik, M. A., Slupianek, A., Salomoni, P., Kitamura, T., Calabretta, B., and Skorski, T. (1999). Signal transducer and activator of transcription (STAT) 5 activation by BCR/ABL is dependent on intact Src homology (SH) 3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189, 1229–1242.

    CAS  PubMed  Google Scholar 

  • Notarbartolo, M., Cervello, M., Dusonchet, L., Cusimano, A., and D’Alessandro, N. (2002). Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of apoptosis proteins). Cancer Lett 180, 91–101.

    CAS  PubMed  Google Scholar 

  • O’Gorman, D. M., McKenna, S. L., McGahon, A. J., Knox, K. A., and Cotter, T. G. (2000). Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia 14, 602–611.

    PubMed  Google Scholar 

  • Okada, M., Adachi, S., Imai, T., Watanabe, K., Toyokuni, S. Y., Ueno, M., Zervos, A. S., Kroemer, G., and Nakahata, T. (2004). A novel mechanism for imatinib mesylate-induced cell death of Bcr-Abl-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103, 2299–2307 (epub 2003 Nov 2226).

    Google Scholar 

  • Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (epub 2005 May 2015).

    Google Scholar 

  • Orian, A., van Steensel, B., Delrow, J., Bussemaker, H. J., Li, L., Sawado, T., Williams, E., Loo, L. W., Cowley, S. M., Yost, C., et al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17, 1101–1114.

    CAS  PubMed  Google Scholar 

  • Orlowski, R. Z. and Baldwin, A. S., Jr. (2002). NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8, 385–389.

    CAS  PubMed  Google Scholar 

  • Osaki, M., Oshimura, M., and Ito, H. (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667–676.

    CAS  PubMed  Google Scholar 

  • Oster, S. K., Ho, C. S., Soucie, E. L., and Penn, L. Z. (2002). The myc oncogene: MarvelouslY Complex. Adv Cancer Res 84, 81–154.

    CAS  PubMed  Google Scholar 

  • Ozoren, N. and El-Deiry, W. S. (2002). Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551–557.

    PubMed  Google Scholar 

  • Ozoren, N. and El-Deiry, W. S. (2003). Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13, 135–147.

    PubMed  Google Scholar 

  • Page, C., Lin, H. J., Jin, Y., Castle, V. P., Nunez, G., Huang, M., and Lin, J. (2000). Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 20, 407–416.

    CAS  PubMed  Google Scholar 

  • Pegram, M. D., Finn, R. S., Arzoo, K., Beryt, M., Pietras, R. J., and Slamon, D. J. (1997). The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15, 537–547.

    CAS  PubMed  Google Scholar 

  • Pelengaris, S., Khan, M., and Evan, G. (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2, 764–776.

    CAS  PubMed  Google Scholar 

  • Perkins, C. L., Fang, G., Kim, C. N., and Bhalla, K. N. (2000). The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 60, 1645–1653.

    CAS  PubMed  Google Scholar 

  • Peter, M. E. and Krammer, P. H. (1998). Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10, 545–551.

    CAS  PubMed  Google Scholar 

  • Peter, M. E. and Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10, 26–35.

    CAS  PubMed  Google Scholar 

  • Pisha, E., Chai, H., Lee, I. S., Chagwedera, T. E., Farnsworth, N. R., Cordell, G. A., Beecher, C. W., Fong, H. H., Kinghorn, A. D., Brown, D. M., and et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1, 1046–1051.

    CAS  PubMed  Google Scholar 

  • Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., and Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–2949.

    CAS  PubMed  Google Scholar 

  • Pompetti, F., Rizzo, P., Simon, R. M., Freidlin, B., Mew, D. J., Pass, H. I., Picci, P., Levine, A. S., and Carbone, M. (1996). Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem 63, 37–50.

    CAS  PubMed  Google Scholar 

  • Proskuryakov, S. Y., Konoplyannikov, A. G., and Gabai, V. L. (2003). Necrosis: a specific form of programmed cell death? Exp Cell Res 283, 1–16.

    CAS  PubMed  Google Scholar 

  • Ravagnan, L., Roumier, T., and Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. J Cell Physiol 192, 131–137.

    CAS  PubMed  Google Scholar 

  • Ray, S., Lu, Y., Kaufmann, S. H., Gustafson, W. C., Karp, J. E., Boldogh, I., Fields, A. P., and Brasier, A. R. (2004). Genomic mechanisms of p210Bcr-Abl signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 279, 35604–35615 (epub 32004 May 35621).

    Google Scholar 

  • Reed, J. C. (1996). Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt, 72–100.

    Google Scholar 

  • Reed, J. C. (2000). Mechanisms of apoptosis. Am J Pathol 157, 1415–1430.

    CAS  PubMed  Google Scholar 

  • Reinke, V. and Lozano, G. (1997). Differential activation of p53 targets in cells treated with ultraviolet radiation that undergo both apoptosis and growth arrest. Radiat Res 148, 115–122.

    CAS  PubMed  Google Scholar 

  • Reuther, J. Y., Reuther, G. W., Cortez, D., Pendergast, A. M., and Baldwin, A. S., Jr. (1998). A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 12, 968–981.

    Google Scholar 

  • Rokudai, S., Fujita, N., Kitahara, O., Nakamura, Y., and Tsuruo, T. (2002). Involvement of FKHR-dependent TRADD expression in chemotherapeutic drug-induced apoptosis. Mol Cell Biol 22, 8695–8708.

    CAS  PubMed  Google Scholar 

  • Sakamuro, D., Eviner, V., Elliott, K. J., Showe, L., White, E., and Prendergast, G. C. (1995). c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11, 2411–2418.

    CAS  PubMed  Google Scholar 

  • Salvesen, G. S. and Dixit, V. M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443–446.

    CAS  PubMed  Google Scholar 

  • Salvesen, G. S. and Dixit, V. M. (1999). Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96, 10964–10967.

    CAS  PubMed  Google Scholar 

  • Salvesen, G. S. and Renatus, M. (2002). Apoptosome: the seven-spoked death machine. Dev Cell 2, 256–257.

    CAS  PubMed  Google Scholar 

  • Sawyers, C. L., McLaughlin, J., and Witte, O. N. (1995). Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181, 307–313.

    CAS  PubMed  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17, 1675–1687.

    CAS  PubMed  Google Scholar 

  • Scaffidi, C., Kirchhoff, S., Krammer, P. H., and Peter, M. E. (1999). Apoptosis signaling in lymphocytes. Curr Opin Immunol 11, 277–285.

    CAS  PubMed  Google Scholar 

  • Schimmer, A. D., Dalili, S., Batey, R. A., and Riedl, S. J. (2006). Targeting XIAP for the treatment of malignancy. Cell Death Differ 13, 179–188.

    CAS  PubMed  Google Scholar 

  • Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R., and Lowe, S. W. (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13, 2670–2677.

    CAS  PubMed  Google Scholar 

  • Schuler, M. and Green, D. R. (2005). Transcription, apoptosis and p53: catch-22. Trends Genet 21, 182–187.

    CAS  PubMed  Google Scholar 

  • Schulze-Bergkamen, H., and Krammer, P. H. (2004). Apoptosis in cancer–implications for therapy. Semin Oncol 31, 90–119.

    CAS  PubMed  Google Scholar 

  • Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., and Peter, M. E. (1998). Apoptosis signaling by death receptors. Eur J Biochem 254, 439–459.

    CAS  PubMed  Google Scholar 

  • Seelan, R. S., Irwin, M., van der Stoop, P., Qian, C., Kaelin, W. G., Jr., and Liu, W. (2002). The human p73 promoter: characterization and identification of functional E2F binding sites. Neoplasia 4, 195–203.

    CAS  PubMed  Google Scholar 

  • Sheikh, M. S. and Huang, Y. (2004). Death receptors as targets of cancer therapeutics. Curr Cancer Drug Targets 4, 97–104.

    CAS  PubMed  Google Scholar 

  • Shi, Y. (2002). Apoptosome: the cellular engine for the activation of caspase-9. Structure (Camb) 10, 285–288.

    CAS  Google Scholar 

  • Shuai, K., Halpern, J., ten Hoeve, J., Rao, X., and Sawyers, C. L. (1996). Constitutive activation of STAT5 by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254.

    CAS  PubMed  Google Scholar 

  • Sillaber, C., Gesbert, F., Frank, D. A., Sattler, M., and Griffin, J. D. (2000). STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 95, 2118–2125.

    CAS  PubMed  Google Scholar 

  • Skorski, T. (2002). BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 21, 8591–8604.

    CAS  PubMed  Google Scholar 

  • Skorski, T., Bellacosa, A., Nieborowska-Skorska, M., Majewski, M., Martinez, R., Choi, J. K., Trotta, R., Wlodarski, P., Perrotti, D., Chan, T. O., et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16, 6151–6161.

    CAS  PubMed  Google Scholar 

  • Soengas, M. S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J. G., Gerald, W. L., Lazebnik, Y. A., et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211.

    CAS  PubMed  Google Scholar 

  • Song, L., Coppola, D., Livingston, S., Cress, D., and Haura, E. B. (2005). Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 4, 267–276 (epub 2005 Mar 2020).

    Google Scholar 

  • Sorice, M., Circella, A., Cristea, I. M., Garofalo, T., Renzo, L. D., Alessandri, C., Valesini, G., and Esposti, M. D. (2004). Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death Differ 11, 1133–1145.

    CAS  PubMed  Google Scholar 

  • Stahl, M., Dijkers, P. F., Kops, G. J., Lens, S. M., Coffer, P. J., Burgering, B. M., and Medema, R. H. (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168, 5024–5031.

    CAS  PubMed  Google Scholar 

  • Stegh, A. H. and Peter, M. E. (2001). Apoptosis and caspases. Cardiol Clin 19, 13–29.

    CAS  PubMed  Google Scholar 

  • Stiewe, T. and Putzer, B. M. (2000). Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26, 464–469.

    CAS  PubMed  Google Scholar 

  • Strasser, A., Harris, A. W., Bath, M. L., and Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333.

    CAS  PubMed  Google Scholar 

  • Strasser, A., O’Connor, L., and Dixit, V. M. (2000). Apoptosis signaling. Annu Rev Biochem 69, 217–245.

    CAS  PubMed  Google Scholar 

  • Suhara, T., Kim, H. S., Kirshenbaum, L. A., and Walsh, K. (2002). Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. Molecular and Cellular Biology 22, 680–691.

    CAS  PubMed  Google Scholar 

  • Sunters, A., Fernandez de Mattos, S., Stahl, M., Brosens, J. J., Zoumpoulidou, G., Saunders, C. A., Coffer, P. J., Medema, R. H., Coombes, R. C., and Lam, E. W. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278, 49795–49805 (epub 42003 Oct 49793).

    Google Scholar 

  • Tai, Y. T., Lee, S., Niloff, E., Weisman, C., Strobel, T., and Cannistra, S. A. (1998). BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol 16, 2583–2590.

    CAS  PubMed  Google Scholar 

  • Teitz, T., Lahti, J. M., and Kidd, V. J. (2001). Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J Mol Med 79, 428–436.

    CAS  PubMed  Google Scholar 

  • Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., and Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6, 529–535.

    CAS  PubMed  Google Scholar 

  • Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    CAS  PubMed  Google Scholar 

  • Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal 16, 139–144.

    CAS  PubMed  Google Scholar 

  • Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U. M. (2006). WTp53 but not tumor-derived mutants bind to BCL2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 26, 26.

    Google Scholar 

  • Toretsky, J. A., Thakar, M., Eskenazi, A. E., and Frantz, C. N. (1999). Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing’s sarcoma family of tumors. Cancer Res 59, 5745–5750.

    CAS  PubMed  Google Scholar 

  • Tourneur, L., Delluc, S., Levy, V., Valensi, F., Radford-Weiss, I., Legrand, O., Vargaftig, J., Boix, C., Macintyre, E. A., Varet, B., et al. (2004). Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res 64, 8101–8108.

    CAS  PubMed  Google Scholar 

  • Tzung, S. P., Kim, K. M., Basanez, G., Giedt, C. D., Simon, J., Zimmerberg, J., Zhang, K. Y., and Hockenbery, D. M. (2001). Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3, 183–191.

    CAS  PubMed  Google Scholar 

  • Underhill-Day, N., Pierce, A., Thompson, S. E., Xenaki, D., Whetton, A. D., and Owen-Lynch, P. J. (2006). Role of the C-terminal actin binding domain in BCR/ABL-mediated survival and drug resistance. Br J Haematol 132, 774–783.

    CAS  PubMed  Google Scholar 

  • Varticovski, L., Daley, G. Q., Jackson, P., Baltimore, D., and Cantley, L. C. (1991). Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. Mol Cell Biol 11, 1107–1113.

    CAS  PubMed  Google Scholar 

  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (epub 2004 Jan 2002).

    Google Scholar 

  • Vaux, D. L. (2002). Apoptosis timeline. Cell Death Differ 9, 349–354.

    CAS  PubMed  Google Scholar 

  • Vaux, D. L. and Korsmeyer, S. J. (1999). Cell death in development. Cell 96, 245–254.

    CAS  PubMed  Google Scholar 

  • Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307–310.

    CAS  PubMed  Google Scholar 

  • Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature medicine 5, 157–163.

    CAS  PubMed  Google Scholar 

  • Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., Wagner, G., Verdine, G. L., and Korsmeyer, S. J. (2004). Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470.

    CAS  PubMed  Google Scholar 

  • Wallach, D. (1997). Apoptosis. Placing death under control. Nature 388, 123, 125–126.

    Google Scholar 

  • Wallach, D., Varfolomeev, E. E., Malinin, N. L., Goltsev, Y. V., Kovalenko, A. V., and Boldin, M. P. (1999). Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17, 331–367.

    CAS  PubMed  Google Scholar 

  • Walton, M. I., Whysong, D., O’Connor, P. M., Hockenbery, D., Korsmeyer, S. J., and Kohn, K. W. (1993). Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 53, 1853–1861.

    CAS  PubMed  Google Scholar 

  • Wang, G. Q., Gastman, B. R., Wieckowski, E., Goldstein, L. A., Gambotto, A., Kim, T. H., Fang, B., Rabinovitz, A., Yin, X. M., and Rabinowich, H. (2001). A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276, 34307–34317 (epub 32001 July 34310).

    Google Scholar 

  • Wang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S., and Huang, Z. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97, 7124–7129.

    CAS  PubMed  Google Scholar 

  • Wang, J. Y. and Ki, S. W. (2001). Choosing between growth arrest and apoptosis through the retinoblastoma tumour suppressor protein, Abl and p73. Biochem Soc Trans 29, 666–673.

    CAS  PubMed  Google Scholar 

  • Wang, L. G., Liu, X. M., Kreis, W., and Budman, D. R. (1999). The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44, 355–361.

    CAS  PubMed  Google Scholar 

  • Wang, W. and El-Deiry, W. S. (2004). Targeting FOXO kills two birds with one stone. Chem Biol 11, 16–18.

    CAS  PubMed  Google Scholar 

  • Waxman, D. J. and Schwartz, P. S. (2003). Harnessing apoptosis for improved anticancer gene therapy. Cancer Res 63, 8563–8572.

    CAS  PubMed  Google Scholar 

  • Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001a). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    Google Scholar 

  • Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001b). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    CAS  PubMed  Google Scholar 

  • Weller, M. (1998). Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res 292, 435–445.

    CAS  PubMed  Google Scholar 

  • Wendel, H. G., De Stanchina, E., Fridman, J. S., Malina, A., Ray, S., Kogan, S., Cordon-Cardo, C., Pelletier, J., and Lowe, S. W. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337.

    CAS  PubMed  Google Scholar 

  • Wennerberg, K., Rossman, K. L., and Der, C. J. (2005). The Ras superfamily at a glance. J Cell Sci 118, 843–846.

    CAS  PubMed  Google Scholar 

  • Whitesell, L. and Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5, 761–772.

    CAS  PubMed  Google Scholar 

  • Xu, H., Tai, J., Ye, H., Kang, C. B., and Yoon, H. S. (2006). The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl. Biochem Biophys Res Commun 341, 938–944 (epub 2006 Jan 2023).

    Google Scholar 

  • Yagita, H., Takeda, K., Hayakawa, Y., Smyth, M. J., and Okumura, K. (2004). TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95, 777–783.

    CAS  PubMed  Google Scholar 

  • Yang, X., Chang, H. Y., and Baltimore, D. (1998). Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1, 319–325.

    CAS  PubMed  Google Scholar 

  • Yin, H., Lee, G. I., Sedey, K. A., Kutzki, O., Park, H. S., Orner, B. P., Ernst, J. T., Wang, H. G., Sebti, S. M., and Hamilton, A. D. (2005). Terphenyl-Based Bak BH3 alpha-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. J Am Chem Soc 127, 10191–10196.

    CAS  PubMed  Google Scholar 

  • Yoo, C. B. and Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5, 37–50.

    CAS  PubMed  Google Scholar 

  • Yu, J. and Zhang, L. (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331, 851–858.

    CAS  PubMed  Google Scholar 

  • Yuan, X. J. and Whang, Y. E. (2002). PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21, 319–327.

    CAS  PubMed  Google Scholar 

  • Zaffaroni, N., Pennati, M., Colella, G., Perego, P., Supino, R., Gatti, L., Pilotti, S., Zunino, F., and Daidone, M. G. (2002). Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 59, 1406–1412.

    CAS  PubMed  Google Scholar 

  • Zamzami, N. and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2, 67–71.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Yu, J., Park, B. H., Kinzler, K. W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992.

    CAS  PubMed  Google Scholar 

  • Zhou, P., Qian, L., Kozopas, K. M., and Craig, R. W. (1997). Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89, 630–643.

    CAS  PubMed  Google Scholar 

  • Zinkel, S. S., Ong, C. C., Ferguson, D. O., Iwasaki, H., Akashi, K., Bronson, R. T., Kutok, J. L., Alt, F. W., and Korsmeyer, S. J. (2003). Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev 17, 229–239.

    CAS  PubMed  Google Scholar 

  • Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18, 1272–1282 (epub 2004 May 1214).

    Google Scholar 

  • Zornig, M., Hueber, A., Baum, W., and Evan, G. (2001). Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551, F1–F37.

    CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Melet, A., Song, K., Bucur, O., Jagani, Z., Grassian, A.R., Khosravi-Far, R. (2008). Apoptotic Pathways in Tumor Progression and Therapy. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_4

Download citation

Publish with us

Policies and ethics