Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 352))

  • 717 Accesses

Spectra provide the most detailed information about Cataclysmic Variables (CVs), and synthetic spectra potentially represent the best avenue to study the characteristics of these fascinating objects. Warner [74] (sect. 2.6.1) lists theoretical flux distribution studies. Also see the discussion by la Dous [12] and references therein. Early representation of accretion disk continua by a sum of black body curves [58,69] was supplanted by model stellar atmosphere spectra applied to finite width annuli of similar T eff and log g[34, 35, 45]. The synthetic spectra studies by Wade [71] and Shaviv &Wehrse [60] may be mentioned in particular.

Wade [72] examined the fits of synthetic accretion disk spectra, based both on black body radiation curves and model stellar atmosphere spectra, to a sample of nine novalike CVs. He found appreciable discrepancies between the models and observations, and concluded in particular that model stellar atmosphere spectra do not reflect the physics of accretion disks.

To the best of our knowledge, the literature does not previously describe a general purpose program to calculate synthetic spectra and synthetic light curves of CVsystems, based on detailed models of accretion disk annuli, including the contributions of the WD, the secondary star, and the accretion disk rim, and tailored to specific systems. Such a program should provide an option to calculate an accretion disk model that is assumed to be quasistationary but for which the radial temperature profile does not follow the standard model. This paper describes a program suite with those characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J., Störzer, H., Shaviv, G., & Wehrse, R. 1988, Astron. & Astroph., 193, L1

    ADS  Google Scholar 

  2. Adam, J., Störzer, H., & Duschl, W.J. 1989a, Astron. & Astroph., 218, 205

    ADS  Google Scholar 

  3. Adam, J., Innes, D.E., Shaviv, G., Störzer, H., & Wehrse, R. 1989b, in Theory of Accretion Disks ed. F. Meyer et al. (Dordrecht:Kluwer), p. 403

    Google Scholar 

  4. Balbus, S.A. 2002, in The Physics of Cataclysmic Variables and Related Objects, ASP Conference Series vol. 261, ed. B.T. Gänsicke, K. Beuermann and K. Reinsch (San Francisco:Astron. Soc. Pacific), p. 356

    Google Scholar 

  5. Balbus, S.A. 2005, in The Astrophysics of Cataclysmic Variables and Related Objects, ASP Conference Series vol. 330, ed. J.-M. Hameury and J.-P. Lasota (San Francisco: Astron. Soc. Pacific), p. 185

    Google Scholar 

  6. Balbus, S.A. & Hawley, J.F. 1991, ApJ, 376, 214

    Article  ADS  Google Scholar 

  7. Balbus, S.A. & Hawley, J.F. 1998, Rev. Mod. Phys., 70, 1

    Article  ADS  Google Scholar 

  8. Buat-Ménard, V., Hameury, J.-M., & Lasota, J.-P. 2001, Astron. & Astroph., 366, 612

    Article  ADS  Google Scholar 

  9. Cannizzo, J.K. 1993, in Accretion Disks in Compact Stellar Systems ed. J.C. Wheeler (Singapore:World Scientific), p. 6

    Google Scholar 

  10. Cannizzo, J.K. 2000, ApJ, 534, L35

    Article  ADS  Google Scholar 

  11. Cannizzo, J.K. & Wheeler, J.C. 1984, ApJS, 55, 367

    Article  ADS  Google Scholar 

  12. la Dous, C. 1989a, Astron. & Astroph., 211, 131

    ADS  Google Scholar 

  13. la Dous, C. 1989b, MNRAS, 238, 935

    ADS  Google Scholar 

  14. Frank, J., King, A., & Raine, D. 1992, Accretion Power in Astrophysics (Cambridge: Univ. Press)

    Google Scholar 

  15. Gammie, C. F. & Menou, K. 1998, ApJ, 492, L75

    Article  ADS  Google Scholar 

  16. Hameury, J.-M., Menou, K., Dubus, G., Lasota, J.-P., & Huré, J.M. 1998, MNRAS, 298, 1048

    Article  ADS  Google Scholar 

  17. Hameury, J.-M. 2002, in The Physics of Cataclysmic Variables and Related Objects, ASP Conference Series vol. 261 ed. Gänsicke, Beuerman, and Reinsch (San Francisco:Astr.Soc.Pacific), p. 377

    Google Scholar 

  18. Hirose, S., Krolik, J.H., & Stone, J.M. 2006, ApJ, 640, 901

    Article  ADS  Google Scholar 

  19. Hoard, D.W., Linnell, A.P., Szkody, P., Fried, R.E., Sion, E.M., Hubeny, I., & Wolfe, M.A. 2004, ApJ, 604, 346

    Article  ADS  Google Scholar 

  20. Hoard, D.W., Linnell, A.P., Szkody, P., & Sion, E.M. 2005, AJ, 130, 214

    Article  ADS  Google Scholar 

  21. Horne, K. 1993, in Accretion Disks in Compact Stellar Systems ed. J. Craig Wheeler (Singapore:World Scientific), p. 117

    Google Scholar 

  22. Horne, K. & Marsh, T.R. 1986, MNRAS, 218, 761

    ADS  Google Scholar 

  23. Huang, M., Sion, E.M., Hubeny, I., Cheng, F.H., & Szkody, P. 1996, ApJ, 458, 355

    Article  ADS  Google Scholar 

  24. Hubeny, I. 1988, Comp. Phys. Comm., 52, 103

    Article  ADS  Google Scholar 

  25. Hubeny, I. 1990, ApJ, 351, 632

    Article  ADS  Google Scholar 

  26. Hubeny, I. 1991, in Structure and Emission Properties of Accretion Disks, ed. C. Bertout, S. Collin, J-P. Lasota, J. Tran Thanh Van (Singapore:Fong & Sons), p. 227

    Google Scholar 

  27. Hubeny, I., Stefl, S., & Harmanec, P. 1985, Bull. Astron. Inst. Czechosl. 36, 214

    ADS  Google Scholar 

  28. Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875

    Article  ADS  Google Scholar 

  29. Hubeny, I. & Hubeny, V. 1997, ApJ, 484, L37

    Article  ADS  Google Scholar 

  30. Hubeny, I. & Hubeny, V. 1998, ApJ, 505, 558

    Article  ADS  Google Scholar 

  31. Hubeny, I., Agol, E., Blaes, O., & Krolik, J.H. 2000, ApJ, 533, 719

    Article  ADS  Google Scholar 

  32. Hubeny, I., Blaes, O., Krolik, J.H., & Agol, E. 2001, ApJ, 559, 680

    Article  ADS  Google Scholar 

  33. Idan, I., Lasota, J.-P., Hameury, J.-M., & Shaviv, G. 1999, PhR, 311, 213

    ADS  Google Scholar 

  34. Kiplinger, A.L. 1979, ApJ, 234, 997

    Article  ADS  Google Scholar 

  35. Kiplinger, A.L. 1980, ApJ, 236, 839

    Article  ADS  Google Scholar 

  36. Ko, Y.-K., Lee, Y.P., Schlegel, E.M., & Kallman, T.R. 1996, ApJ, 457, 363

    Article  ADS  Google Scholar 

  37. Kříž, S. & Hubeny, I. 1986, Bull. Astron. Inst. Czechosl., 37, 129

    ADS  Google Scholar 

  38. Lasota, J.-P. 2001, New Astronomy Reviews, 45, 449

    Article  ADS  Google Scholar 

  39. Liang, E.P.T. & Price, R.H. 1977, ApJ, 218, 247

    Article  ADS  Google Scholar 

  40. Linnell, A.P. & Hubeny, I. 1996, ApJ, 471, 958

    Article  ADS  Google Scholar 

  41. Linnell, A.P., Szkody, P., Gänsicke, B., Long, K.S., Sion, E.M., Hoard, D.W., & Hubeny, I. 2005, ApJ, 624, 923

    Article  ADS  Google Scholar 

  42. Linnell, A.P., Hoard, D.W., Szkody, P., Long, K.S., Hubeny, I., Gänsicke, B. & Sion, E.M. 2006, ApJ, in press

    Google Scholar 

  43. Marsh, T.R. & Horne, K. 1987, ApSpSci, 130, 85

    ADS  Google Scholar 

  44. Mason, E., Skidmore, W., Howell, S.B., Ciardi, D.R., Littlefair, S., & Dhillon, V.S. 2000, MNRAS, 318, 440

    Article  ADS  Google Scholar 

  45. Mayo, S.K., Wickramasinge, D.T., & Whelan, J.A.J. 1980, MNRAS, 193, 793

    ADS  Google Scholar 

  46. Menou, K. 2000, Science, 288, 2022

    Article  ADS  Google Scholar 

  47. Menou, K. 2002, in The Physics of Cataclysmic Variables and Related Objects, ASP Conference Series vol.261 ed. Gänsicke, Beuerman, and Reinsch (San Francisco:Astr.Soc.Pacific), p. 387

    Google Scholar 

  48. Meyer, F. & Meyer-Hofmeister, E. 1994, Astron. & Astroph., 288, 175

    ADS  Google Scholar 

  49. Meyer, F. & Meyer-Hofmeister, E. 1999, Astron. & Astroph., 341, L23

    ADS  Google Scholar 

  50. Mihalas, D. 1978, Stellar Atmospheres, 2nd ed. (San Francisco:Freeman)

    Google Scholar 

  51. Miller, K.A. & Stone, J.M. 2000, ApJ, 534, 398

    Article  ADS  Google Scholar 

  52. Murray, S.D. & Lin, D.N.C. 1992, ApJ, 384, 177

    Article  ADS  Google Scholar 

  53. Osaki, Y. 1996, PASP, 108, 39

    Article  ADS  Google Scholar 

  54. Pringle, J. 1981, Ann. Rev. Astron. Astrophys., 19, 137

    Article  ADS  Google Scholar 

  55. Robinson, E.L. 1976, Ann. Rev. Astron. Astrophys., 14, 119

    Article  ADS  Google Scholar 

  56. Robinson, E.L., Marsh, T.R., & Smak, J.I. 1993, in Accretion Disks in Compact Stellar Systems, ed. J.C. Wheeler (Singapore:World Scientific), p. 75

    Google Scholar 

  57. Rutten, R.G.M., van Paradijs, J., & Tinbergen, J. 1992, Astron. & Astroph., 260, 213

    ADS  Google Scholar 

  58. Schwarzenberg-Czerny, A., & Różyczka, M. 1977, Acta Astron., 27, 429

    ADS  Google Scholar 

  59. Shaviv, G. & Wehrse, R. 1986, Astron. & Astroph., 159, L5

    ADS  Google Scholar 

  60. Shaviv, G. & Wehrse, R. 1989, in Theory of Accretion Disks, eds. F. Meyer et al. (Dordrecht:Kluwer), p.419

    Google Scholar 

  61. Shaviv, G. & Wehrse, R. 1991, Astron. & Astroph., 251, 117

    MATH  ADS  Google Scholar 

  62. Skidmore, W., Mason, E., Howell, S.B., Ciardi, D.R., Littlefair, S., & Dhillon, V.S. 2000, MNRAS, 318, 429

    Article  ADS  Google Scholar 

  63. Shakura, N.I. & Sunyaev, R.A. 1973, Astron. & Astroph., 24, 337

    ADS  Google Scholar 

  64. Smak, J. 1982, Acta Astron., 32, 199

    ADS  Google Scholar 

  65. Smak, J. 1989, Acta Astron., 39, 201

    ADS  Google Scholar 

  66. Smak, J. 2002, Acta Astron., 52, 263

    ADS  Google Scholar 

  67. Stone, J.M., Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ, 463, 656

    Article  ADS  Google Scholar 

  68. Tout, C.A. 2000, New Astronomy Reviews, 44, 37

    Article  ADS  Google Scholar 

  69. Tylenda, R. 1977, Acta Astron., 31, 267

    ADS  Google Scholar 

  70. Tylenda, R. 1981, Acta Astron., 31, 127

    ADS  Google Scholar 

  71. Wade, R.A. 1984, MNRAS, 208, 381

    ADS  Google Scholar 

  72. Wade, R.A. 1988, ApJ, 335, 394

    Article  ADS  Google Scholar 

  73. Wade, R.A. & Hubeny, I. 1998, ApJ, 509, 350

    Article  ADS  Google Scholar 

  74. Warner, B. 1995, Cataclysmic Variable Stars (Cambridge:University Press)

    Book  Google Scholar 

  75. Williams, R. 1980, ApJ, 235, 939

    Article  ADS  Google Scholar 

  76. Williams, G.A. & Shipman, H.L. 1988, ApJ, 326, 738

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Linnell, A.P. (2008). Models for Dynamically Stable Cataclysmic Variable Systems. In: Short-Period Binary Stars: Observations, Analyses, and Results. Astrophysics and Space Science Library, vol 352. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6544-6_9

Download citation

Publish with us

Policies and ethics