Distance Estimation for Eclipsing X-ray Pulsars

  • R. E. Wilson
  • H. Raichur
  • B. Paul
Part of the Astrophysics and Space Science Library book series (ASSL, volume 352)

Distance of an X-ray binary can be computed from a rigorous flux scaling law that connects model stellar atmosphere output with observed standard magnitudes of the optical star via either of two standard magnitude calibrations that agree within 4 percent. Accordingly the corresponding distance disagreement (due to the calibrations only) is only 2 percent, which is negligible compared to several other error sources. The flux-distance scaling is not the usual one for spherical stars but preserves directional (i.e. aspect) information, and therefore is not limited to well detached binaries. Bolometric corrections are not needed, so errors in their estimation are avoided. The procedure also models dependence of system brightness and spectroscopically observable temperature on orbital phase and inclination due to tides, irradiance, and eccentric orbits, although those effects cause only minor distance uncertainties for most X-ray binaries. Not taken into account, due to their largely stochastic nature, are radial velocity variations caused by dynamical tides. Expressions are given for derivatives ∂d/∂p, of distance with respect to various parameters. Some of the derivatives are entirely analytic while others are partly numerical. Upper and lower limits to the relative radius, r= R/a, of an X-ray binary's optical star can be measured, although actual rand inclination are otherwise uncertain. An application to the High Mass X-ray Binary Vela X-1/GP Vel, based on archival pulse arrival times and radial velocities, finds a distance of about 2.2 kiloparsecs and also finds distance uncertainties due to estimated magnitude, interstellar extinction, metallicity, orbit size, optical star size, surface temperature, and surface gravity.


Neutron Star Radial Velocity Light Curve Interstellar Extinction Orbit Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Bessell 1979, PASP, 102, 1181CrossRefADSGoogle Scholar
  2. 2.
    O. Barziv, L. Kaper, M.H. Van Kerkwijk, J.H. Telting, J. Van Paradijs 2001, A&A, 377, 925CrossRefADSGoogle Scholar
  3. 3.
    L. Bildsten, D. Chakrabarty, J. Chiu, M.H. Finger, D.T. Koh, R.W. Nelson, T.A. Prince, B.C. Rubin, D.M. Scott, M. Stollberg, B.A. Vaughan, C.A. Wilson, R.B. Wilson 1997, ApJS, 113, 367CrossRefADSGoogle Scholar
  4. 4.
    P.E. Boynton, J.E. Deeter, F.K. Lamb, G. Zylstra 1986, ApJ, 307, 545CrossRefADSGoogle Scholar
  5. 5.
    J.A. Cardelli, G.C. Clayton, J.S. Mathis 1989, ApJ, 345, 245CrossRefADSGoogle Scholar
  6. 6.
    A.W. Cousins 1971, Roy. Obs. Ann., No. 7Google Scholar
  7. 7.
    A.W. Cousins 1973, Mem. Roy. Astron. Soc, 77, 223ADSGoogle Scholar
  8. 8.
    A.W. Cousins 1980, S. Africa Astron. Obs. Circ., 1, 166ADSGoogle Scholar
  9. 9.
    A.W. Cousins 1981, S. Africa Astron. Obs. Circ., 6, 4ADSGoogle Scholar
  10. 10.
    J.E. Deeter, P.E. Boynton, N. Shibazi, S. Hayakawa, F. Nagase, N. Sato 1987, AJ, 93, 877CrossRefADSGoogle Scholar
  11. 11.
    P.J. Flower 1996, ApJ, 469, 355CrossRefADSGoogle Scholar
  12. 12.
    H.L. Johnson 1965, Contrib. Lunar & Planetary Lab., 3, 73ADSGoogle Scholar
  13. 13.
    R. Kurucz 1993, in Light Curve Modeling of Eclipsing Binary Stars, ed. E.F. Milone, Springer Publ. (New York), p. 93Google Scholar
  14. 14.
    J.E. McClintock, S. Rappaport, P.C. Joss, H. Bradt, J. Buff, G.W. Clark, D. Hearn, W.H.G. Lewin, T. Matilsky, W. Mayer, F. Primini 1976, ApJ, 206, 99CrossRefADSGoogle Scholar
  15. 15.
    W. Van Hamme, R.E. Wilson 2003, ASP Conf. Ser., 298, 323ADSGoogle Scholar
  16. 16.
    R.E. Wilson 1979, ApJ, 234, 1054CrossRefADSGoogle Scholar
  17. 17.
    R.E. Wilson 2004, New Astr. Rev., 48, 695CrossRefADSGoogle Scholar
  18. 18.
    R.E. Wilson 2005, ApSS, 296, 197ADSGoogle Scholar
  19. 19.
    R.E. Wilson 2007a, ASP Conf. Ser., 362, 3ADSGoogle Scholar
  20. 20.
    R.E. Wilson 2007b, ApJ, in pressGoogle Scholar
  21. 21.
    R.E. Wilson, D. Terrell 1994, Am. Inst. Phys. Conf. Proc. 308, ed. S.S. Holt & C.S. Day, p. 483Google Scholar
  22. 22.
    R.E. Wilson, D. Terrell 1998, MNRAS, 296, 33CrossRefADSGoogle Scholar
  23. 23.
    R.E. Wilson, A.T. Wilson 1976, ApJ, 204, 551CrossRefADSGoogle Scholar
  24. 24.
    E.J. Zuiderwijk 1995, A&A, 299, 79ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • R. E. Wilson
    • 1
  • H. Raichur
    • 2
  • B. Paul
    • 2
  1. 1.Department of AstronomyUniversity of FloridaGainesvilleUSA
  2. 2.Raman Research InstituteBangaloreIndia

Personalised recommendations