Skip to main content

Geophysical Characterization of Hard Rock Aquifers

  • Chapter
Groundwater Dynamics in Hard Rock Aquifers

Abstract

Geophysics plays a major role for characterizing the hard rocks for groundwater studies. The qualitative and quantitative application has increased since past few years due to rapid development and advancement in microprocessors and associated numerical modelling solutions. Although geophysics has ability to probe deep earth interior (say >1000 m), but its application for groundwater studies is usually restricted to depths less than and around 250 m below the surface. These include mapping the depth and thickness of aquifers, mapping aquitards or confining layers, locating fractures and fault zones and mapping contamination to the groundwater such as that from saltwater intrusion. The theoretical and practical background to geophysics has been extensively reviewed and can be studied in standard texts on the subject, for example Kearey & Brooks (1991); Telford et al. (1976); Parasnis (1979); Dobrin (1976); Grant and West (1965); Reynolds (1997); Miller et al. (1996); Murali et al. (1998); etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acworth, R.I., 1987. The Development of Crystalline Basement Aquifers in a Tropical Environment. Quarterly Journal of Engineering Geology, 20: 265–272.

    Article  Google Scholar 

  • Ahmed, M.V., 1964. A Laboratory Study of Streaming Potentials: Geophysical Prospecting; 12(1): 49–64.

    Article  Google Scholar 

  • Barker, R.D., 1992. The Offset System of Resistivity Sounding and its use with a Multicore Cable. Geophysical Prospecting, 29: 128–143.

    Article  Google Scholar 

  • Bogoslorsky, V.A. and Ogilvy, A.A., 1973. Deformations of Natural Electric Fields Near Drainage Structures: Geophysical Prospecting; 21(4): 716–723.

    Article  Google Scholar 

  • Compagne Generale De Geophysique, 1963. Mater Curves for Electrical Sounding, 2nd Revised Edition, Eaeg, The Hague, The Netherlands.

    Google Scholar 

  • Dobrin, M.B. 1976. Introduction to Geophysical Prospecting. New York, Mcgraw-Hill, pp. 630.

    Google Scholar 

  • Eddy-Dilek, C.A., Hoekstra, P., Harthill, N., Blohm, M., and Phillips, D.R., 1996. Definition of a Critical Confining Zone Using Surface Geophysical Methods. SAGEEP, pp. 387.

    Google Scholar 

  • Fitterman, D.V., 1979. Calculation of Self-Potential Anomalies Near Vertical Contacts: Geophysics; 44(2): 195–205.

    Google Scholar 

  • Flathe, H., 1963. Five Layer Master Curves for the Hydrogeological Interpretation of Geoelectrica Resistivity Measurements above a Two Storey Aquifer, Geophysical Prospecting, 11: 471–508.

    Article  Google Scholar 

  • Ghosh, D.P., 1971a. The Application of Linear Filter Theory to the Direct Interpretation of Geoelectrical Resistivity Sounding Measurements, Geophysical Prospecting, 19: 192–217.

    Article  Google Scholar 

  • Ghosh, D.P., 1971b. Inverse Filter Coefficients for the Computation of Apparent Resistivity Standard Curves for a Horizontally Stratified Earth, Geophysical Prospecting, 19: 769–775.

    Article  Google Scholar 

  • Goldman, M., Rabinovich, B., Rabinovich, M., Gilad, D., Gev, I. and Schirov, M., 1994. Application of Integrated Nmr-Tdem Method in Ground Water Exploration in Israel. Jour. Appl. Geophys, 31: 27–52.

    Article  Google Scholar 

  • Grant, F.S. and West, G.F., 1965. Interpretation Theory in Applied Geophysics. Mcgraw-Hill, New York.

    Google Scholar 

  • Griffiths, D.H., Turnbull J. and Olayinka, A.I., 1990. Two Dimensional Resistivity Mapping with a Computer Controlled Array. First Break, 8: 121–129.

    Google Scholar 

  • Griffiths, D.H. and Turnbull, J., 1985. A Multi Electrode Array for Resistivity Surveying. First Break 3: 16–20.

    Google Scholar 

  • Griffiths, D.H. and Barker, R.D., 1993. Two-Dimensional Resistivity Imaging and Modeling in Areas of Complex Geology. Journal of Applied Geophysics, 29: 211–226.

    Article  Google Scholar 

  • Jupp, D.L.B. and Vozoff, K., 1975. Stable Iterative Methods for the Inversion of Geophysical Data. Geophysical Journal of The Royal Astronomical Society, 957–976.

    Google Scholar 

  • Kearey & Brookes, 1991. An Introduction to Geophysical Exploration.

    Google Scholar 

  • Ketola-Matti, 1972. Some Points of View Concerning Mise-À-La-Masse Measurements. Geoexploration, 10(1): 1–21.

    Article  Google Scholar 

  • Krishnamurthy, N.S., Ananda Rao., V., Negi, B.C., Kumar, D., Jain, S.C., Ahemed, S. and Dhar, R.L., 2001. Electrical Self Potential and Mise-À-La-Masse Investigation in Maheshwaram Watershed, Andhra Pradesh, India. NGRI Technical Report No. NGRI-2001-GW-314.

    Google Scholar 

  • Lieblich, D.A., Legchenko, A., Haeni, F.P. and Portselan, A., 1994. Surface Nuclear Magnetic Resonance Experiments to Detect Subsurface Water at Haddam Meadows, Connecticut. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, March 27–31, 1994, Boston, Massachusetts, 2, pp. 717–736.

    Google Scholar 

  • Loke, M.H. and Barker, R.D., 1996. Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospectings 44: 499–524.

    Article  Google Scholar 

  • Miller, P.T., Mcgeary, S. and Madsen, J.A., 1996. High-Resolution Seismic Reflection Images of New Jersey Coastal Aquifers. Sageep, pp. 55.

    Google Scholar 

  • Murali, S., Patangay, N.S., 1998. Principles and Applications of Groundwater Geophysics, AEG, Hyderabad, India.

    Google Scholar 

  • Orellana, E. and Mooney, H.M., 1966. Master Tables and Curves for Vertical Electrical Sounding over Layered Structures. Interciencia, Madrid, Spain.

    Google Scholar 

  • Parasnis, D.S., 1979. Principles of Applied Geophysics. Chapman and Hall. pp. 275.

    Google Scholar 

  • Parasnis, D.S., 1967. Three-Dimensional Electric Mise-À-La-Masse Survey of an Irregular Lead-Zinc-Copper Deposit in Central Sweden. Geophysical Prospecting, 15: pp. 407–437.

    Article  Google Scholar 

  • Parkhomenko, E.I., 1971. Electrification Phenomena in Rocks. Plenum Press; New York; 285.

    Google Scholar 

  • Rangarajan, R. and Prasada Rao, N.T.V., 2001. Technical Report No. NGRI-2001-GW-298

    Google Scholar 

  • Reynolds, 1997. An Introduction to Applied and Environmental Geophysics, 1st Ed. Wiley. Rijkswaterstaat, The Netherlands, 1969. Standard Graphs for Resistivity Prospecting. European Association of Exploration Geophysicists, The Hague.

    Google Scholar 

  • Schirov, M., Legchenko, A. and Creer, G., 1991 New Direct Non-Invasive Ground Water Detection Technology for Australia. Expl. Geophys., 22: 333–338.

    Article  Google Scholar 

  • Stefanesco, S.S. et al., 1930. Sur La Distribution Electrique Potentielle Author D’une Prise Ae Rerre Ponetuelle Dans Unterrain A Couches Horzontales Homogens Et Isotropes. Journal Physique Et Radium Sieres, 7: 132–141.

    Article  Google Scholar 

  • Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A., 1976. Applied Geophysics. Cambridge University Press.

    Google Scholar 

  • Trushkin D.V., Shushakov, O.A. and Legchenko, A.V., 1995. Surface NMR applied to an electroconductive medium. Geophys.Prosp., 43: 623–633.

    Article  Google Scholar 

  • Varian, R.H., 1962. Ground Liquid Prospecting Method and Apparatus. US Patent 3019383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Capital Publishing Company

About this chapter

Cite this chapter

Krishnamurthy, N.S., Chandra, S., Kumar, D. (2008). Geophysical Characterization of Hard Rock Aquifers. In: Ahmed, S., Jayakumar, R., Salih, A. (eds) Groundwater Dynamics in Hard Rock Aquifers. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6540-8_4

Download citation

Publish with us

Policies and ethics