A 3D Cohesive Investigation on Branching for Brittle Materials

Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 5)

Summary

Recently, Fineberg and Sharon conducted dynamic crack propagation experiments in PMMA and soda lime glass [1, 2, 3, 4, 5, 6, 7]. They pointed out some notable features of micro-branching instabilities in brittle materials, and their experiments raised a considerable interest for the brittle fracture dynamics. In this paper we present some numerical results on brittle fracture obtained by using cohesive theories of fracture. In the numerical calculations, the branching instability is a natural outcome of the explicit formulation. The cohesive model captures the basic features of experiments, such as the transition of the crack surface from smooth to hackled with increasing energy flux, and the power-law functional form of the profile of the crack branches.

Keywords

branching instabilities cohesive models brittle fracture finite elements. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fineberg J, Gross SP, Marder M, Swinney HL (1992) Physical Review Letters 67:457–460CrossRefGoogle Scholar
  2. 2.
    Fineberg J, Gross SP, Marder M, Swinney HL (1992) Physical Review B 45:5146–5154CrossRefGoogle Scholar
  3. 3.
    Sharon E, Gross AP, Fineberg J (1995) Physical Review Letters 74:5096–5099CrossRefGoogle Scholar
  4. 4.
    Sharon E, Gross AP, Fineberg J (1996) Physical Review Letters 76:2117–2120CrossRefGoogle Scholar
  5. 5.
    Sharon E, Fineberg J (1996) Physical Review B 54:7128–7139CrossRefGoogle Scholar
  6. 6.
    Sharon E, Fineberg J (1998) Philosophical Magazine B 78:243–251Google Scholar
  7. 7.
    Sharon E, Fineberg J (1999) Letters to Nature, 397:333–335CrossRefGoogle Scholar
  8. 8.
    Freund LB (1990) Dynamic Fracture Mechanics. Cambridge Univ. Press, New York.MATHCrossRefGoogle Scholar
  9. 9.
    Ravi-Chandar K, Knauss WG (1984) International Journal of Fracture, 26:65–80CrossRefGoogle Scholar
  10. 10.
    Marder M, Liu X (1993) Physical Review Letters 71:2417–2420CrossRefGoogle Scholar
  11. 11.
    Marder M, Gross S (1995) Journal of the Mechanics and Physics of Solids 43:1–48MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Abraham FF, Brodbeck D, Rafey RA, Rudge WE (1993) Physical Review Letters 73:272–275CrossRefGoogle Scholar
  13. 13.
    Zhou SJ, Lomdahl PS, Thomson R, and Holian BL (1996) Physical Review Letters 76:2318–2321CrossRefGoogle Scholar
  14. 14.
    Johnson E (1992) International Journal of Fracture 55:47–63CrossRefGoogle Scholar
  15. 15.
    Xu XP, Needleman A (1994) Journal of the Mechanics and Physics of Solids 42:1397–1434MATHCrossRefGoogle Scholar
  16. 16.
    Falk M, Needleman A, Rice JR (2001) Journal de Physique IV 5.43–5.50.Google Scholar
  17. 17.
    Martin T, Espanol P, Rubio MA, Zuniga I (2000) Physical Review E 61:6120–6131CrossRefGoogle Scholar
  18. 18.
    Yu RC (2001) Three-dimensional Cohesive Modelling of Impact Damage of Composites. PhD thesis, California Institute of Technology, Pasadena, CAGoogle Scholar
  19. 19.
    Pandolfi A, Ortiz M (1999) Engineering with Computers 14:287–308CrossRefGoogle Scholar
  20. 20.
    Pandolfi A, Ortiz M (2002) Engineering with Computers 18:148–159CrossRefGoogle Scholar
  21. 21.
    Ortiz M, Pandolfi A (1999) International Journal for Numerical Methods in Engineering 44:1277–1282CrossRefGoogle Scholar
  22. 22.
    Camacho GT, Ortiz M (1996) International Journal of Solids and Structures 33:2899–2938MATHCrossRefGoogle Scholar
  23. 23.
    Ruiz G, Ortiz M, Pandolfi A (2000) International Journal for Numerical Methods in Engineering 48:963–994MATHCrossRefGoogle Scholar
  24. 24.
    Ruiz G, Pandolfi A, Ortiz M (2001) International Journal for Numerical Methods in Engineering 52:97–120CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.E.T.S. de Ingenieros de Caminos, Canales y PuertosUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Dipartimento di Ingegneria StrutturalePolitecnicoItaly
  3. 3.Engineering and Applied Science DivisionCalifornia Institute of TechnologyPasadenaCA

Personalised recommendations