Skip to main content

Accurate Simulation of Frictionless and Frictional Cohesive Crack Growth in Quasi-Brittle Materials Using XFEM

  • Conference paper
Book cover IUTAM Symposium on Discretization Methods for Evolving Discontinuities

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 5))

Summary

This paper discusses the crack tip asymptotic fields of frictionless and frictional cohesive cracks in quasi-brittle materials. This has been made possible after reformatting the cohesive-law into a special but universal polynomial. For accurate simulation of crack growth in quasi-brittle materials using the extended/generalized finite element method (XFEM), the leading term of the true displacement asymptotic field is used as the enrichment function at the tip of a cohesive crack. The opening component of the same field is also used as the initial guess opening profile of a newly extended cohesive segment. A statically admissible stress recovery (SAR) technique is used to recover the stresses at the crack tip. Finally, a pure mode I cohesive crack problem is analysed to demonstrate the characteristics of global responses and local fields obtained numerically by the XFEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hillerborg A, Modeer E, Petersson PE (1976) Cement Concrete Res 6:773–781

    Article  Google Scholar 

  2. Elices M, Guinea GV, Gómez J, Planas J (2002) Engrg Fract Mech 69:137–163

    Article  Google Scholar 

  3. Karihaloo BL (1995) Fracture mechanics and structural concrete. Addison Wesley Longman, UK

    Google Scholar 

  4. de Borst R, Gutierrez MA, Wells GN, Remmers JJC, Askes H (2004) Int J Numer Meth Engrg 60:289–315

    Article  MATH  Google Scholar 

  5. Moës N, Dolbow J, Belytschko T (1999) Int J Numer Meth Engrg 46:131–150

    Article  MATH  Google Scholar 

  6. Strouboulis T, Copps K, Babuska I (2001) Comput Meth Appl Mech Engrg 190:4081–4193

    Article  MATH  MathSciNet  Google Scholar 

  7. Karihaloo BL, Xiao QZ (2003) Comput Struct 81:119–129

    Article  Google Scholar 

  8. Xiao QZ, Karihaloo BL (2005) Recent developments of the extended/generalized FEM and a comparison with the FEM. In: Wu XP (ed) Developments and applications of solid mechanics (Proceedings of the Symposium on Prof M. G. Huang's 90th Birthday). Press of University of Science and Technology of China, Hefei, China, pp. 303–324

    Google Scholar 

  9. Wells GN, Sluys LJ (2001) Int J Numer Meth Engrg 50: 2667–2682

    Article  MATH  Google Scholar 

  10. Moës N, Belytschko T (2002) Engrg Fract Mech 69: 813–833

    Article  Google Scholar 

  11. Hansbo A, Hansbo P (2004) Comput Meth Appl Mech Engrg 193: 3523–3540

    Article  MATH  MathSciNet  Google Scholar 

  12. Zi G, Belytschko T (2003) Int J Numer Meth Engrg 57: 2221–2240

    Article  MATH  Google Scholar 

  13. Alfaiate J, Simone A, Sluys LJ (2003) Int J Solids Struct 40: 5799–5817

    Article  MATH  Google Scholar 

  14. Mariani S, Perego U (2003) Int J Numer Meth Engrg 58: 103–126

    Article  MATH  MathSciNet  Google Scholar 

  15. Xiao QZ, Karihaloo BL (2006) J Mech Mater Struct 1: 881–910

    Article  Google Scholar 

  16. Rubinstein AA (2003) Int J Fract 119: L15–L20

    Article  Google Scholar 

  17. Xiao QZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least squares technique. In: Topping BHV, Mota Soares CA (eds) Progress in computa- tional structures technology. Saxe-Coburg Publications, Stirling, Scotland, pp. 111–138

    Chapter  Google Scholar 

  18. Xiao QZ, Karihaloo BL (2006) Int J Numer Meth Engrg 66: 1378–1410

    Article  MATH  Google Scholar 

  19. Xiao QZ, Karihaloo BL, Liu XY (2007) Incremental-secant modulus iteration scheme and stress recovery for simulating cracking process in quasi-brittle materials using XFEM. Int J Numer Meth Engng 69: 2606–2635.

    Article  Google Scholar 

  20. Cornelissen HAW, Hordijk DA, Reinhardt HW (1986) Heron 31: 45–56.

    Google Scholar 

  21. Wecharatana M (1990) Brittleness index of cementitious composite. In: Supren-ant BA (ed) Serviceability and durability of construction materials, ASCE Publications, New York.

    Google Scholar 

  22. Muskhelishvili NI (1953) Some basic problems of mathematical theory of elasticity. Noordhoff, Holland.

    MATH  Google Scholar 

  23. Sih GC, Liebowitz H (1968) Mathematical theories of brittle fracture. In: Liebowitz H (ed) Fracture: An advanced treatise, Vol. II. Academic Press, New York, pp. 67–190

    Google Scholar 

  24. Karihaloo BL, Xiao QZ (2003) Linear and Nonlinear Fracture Mechanics. In: Milne I, Ritchie RO, Karihaloo BL (eds) Comprehensive structural integrity, Vol 2: Karihaloo BL, Knauss WG (eds) Fundamental theories and mechanisms of failure, Chapter 2.03. Elsevier Pergamon, UK, pp. 81–212

    Google Scholar 

  25. Abdalla HM, Karihaloo BL (2004) Mag Concrete Res 56: 597–604

    Google Scholar 

  26. Planas J, Elices M, Guinea GV, Gómez FJ, Cendón DA, Arbilla I (2003) Engrg Fract Mech 70: 1759–1776

    Article  Google Scholar 

  27. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Int J Numer Meth Engrg 64: 1033–1056

    Article  MATH  Google Scholar 

  28. Duff IS, Reid JK (1983) ACM Trans Math Softw 9: 302–325

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Karihaloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Karihaloo, B.L., Xiao, Q.Z. (2007). Accurate Simulation of Frictionless and Frictional Cohesive Crack Growth in Quasi-Brittle Materials Using XFEM. In: Combescure, A., De Borst, R., Belytschko, T. (eds) IUTAM Symposium on Discretization Methods for Evolving Discontinuities. IUTAM Bookseries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6530-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6530-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6529-3

  • Online ISBN: 978-1-4020-6530-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics