Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 5))

  • 1183 Accesses

Summary

In this chapter, meshless discretisation methods are explored in the implementation of nonlocal continuum damage theories. Integral-type and gradient-type nonlocality are both considered. The main advantage of using a meshless implementation (compared to more established discretisation methods such as the finite element method) is that the higher-order continuity requirements imposed by gradient-type nonlocality can be accomodated straightforwardly Thus, meshless methods are particularly suited as an implementational framework to test and compare various nonlocal theories. Here, the element-free Galerkin (EFG) method is used. In particular, second-order and fourth order gradient damage models are compared to integral-type damage models whereby the integral nonlocal operator acts on the equivalent strain or on the displacements. No signficant differences in response are found, which implies that the inclusion of a fourth-order term in the gradient-type nonlocality is of lesser importance. Finally, the mathematical non-locality of EFG interpolation functions is tested to ascertain whether it provides a mechanical nonlocality to the description. It is shown that this is not the case. However, despite this lack of intrinsic mechanical nonlocality, the EFG method is an excellent tool for the numerical implementation of a nonlocal continuum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.C. Aifantis. ASME J. Engng Mat. Techn., 106:326–330, 1984.

    Article  Google Scholar 

  2. E.C. Aifantis. Int. J. Plast, 3:211–247, 1987.

    Article  MATH  Google Scholar 

  3. H. Askes and E.C. Aifantis. Int. J. Fract., 117:347–358, 2002.

    Article  Google Scholar 

  4. H. Askes, J. Pamin, and R. de Borst. Int. J. Num. Meth. Engng, 49:811–832, 2000.

    Article  MATH  Google Scholar 

  5. H. Askes and L.J. Sluys. Eur. J. Mech. A/Sol., 21:379–390, 2002.

    Article  MATH  Google Scholar 

  6. H. Askes and L.J. Sluys. Arch. Appl. Mech., 73:448–465, 2003.

    Article  MATH  Google Scholar 

  7. Z.P. Bažant and G. Pijaudier-Cabot. ASME J. Appl. Mech., 55:287–293, 1988.

    MATH  Google Scholar 

  8. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Comp. Meth. Appl. Mech. Engng, 139:3–47, 1996.

    Article  MATH  Google Scholar 

  9. T. Belytschko, Y.Y. Lu, and L. Gu. Int. J. Num. Meth. Engng, 37:229–256, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Borino, B. Failla, and F. Parrinello. Int. J. Sol. Struct., 40:3621–3645, 2003.

    Article  MATH  Google Scholar 

  11. J.-S. Chen, C.-T. Wu, and T. Belytschko. Int. J. Numer. Meth. Engng, 47:1303–1322, 2000.

    Article  MATH  Google Scholar 

  12. C. Comi. Mech. Cohes.-Frict. Mater., 4:17–36, 1999.

    Article  Google Scholar 

  13. R. de Borst, A. Benallal, and O.M. Heeres. J. Phys. IV, 6:491–502, 1996.

    Google Scholar 

  14. R. de Borst and H.-B. Mühlhaus. Int. J. Num. Meth. Engng, 35:521–539, 1992.

    Article  MATH  Google Scholar 

  15. J.H.P. de Vree, W.A.M. Brekelmans, and M.A.J. van Gils. Comp. Struct., 55:581–588, 1995.

    Article  MATH  Google Scholar 

  16. A.C. Eringen. Int. J. Engng Sci., 19:1461–1474, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  17. A.C. Eringen. Int. J. Engng Sci., 21:741–751, 1983.

    Article  MATH  Google Scholar 

  18. M. Frémond and B. Nedjar. Int. J. Sol. Struct., 33:1083–1103, 1996.

    Article  MATH  Google Scholar 

  19. A. Huerta and G. Pijaudier-Cabot. ASCE J. Engng Mech., 120:1198–1218, 1994.

    Article  Google Scholar 

  20. M. Jirásek. Int. J. Solids Struct., 35:4133–4145, 1998.

    Article  MATH  Google Scholar 

  21. M. Jirásek and S. Marfia. Int. J. Num. Meth. Engng, 63:77–102, 2005.

    Article  MATH  Google Scholar 

  22. M. Jirásek and B. Patzák. Comp. Struct., 80:1279–1293, 2002.

    Article  Google Scholar 

  23. M. Jirásek and S. Rolshoven. Int. J. Engng Sci., 41:1553–1602, 2003.

    Article  Google Scholar 

  24. T. Liebe, P. Steinmann, and A. Benallal. Comp. Meth. Appl. Mech. Engng., 190:6555–6576, 2001.

    Article  MATH  Google Scholar 

  25. Y.Y. Lu, T. Belytschko, and L. Gu. Comp. Meth. Appl. Mech. Engng, 113:397–414, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Mazars and G. Pijaudier-Cabot. ASCE J. Engng Mech., 115:345–365, 1989.

    Article  Google Scholar 

  27. H.-B. Mühlhaus and E.C. Aifantis. Int. J. Sol. Struct., 28:845–857, 1991.

    Article  MATH  Google Scholar 

  28. J. Pamin. Gradient-dependent plasticity in numerical simulation of localization phenomena. Dissertation, Delft University of Technology, 1994.

    Google Scholar 

  29. J. Pamin, H. Askes, and R. de Borst. Comp. Meth. Appl. Mech. Engng, 192:2377–2403, 2003.

    Article  MATH  Google Scholar 

  30. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, and J.H.P. de Vree. Int. J. Num. Meth. Engng, 39:3391–3403, 1996.

    Article  MATH  Google Scholar 

  31. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, and I. Spee. Eur. J. Mech. A/Sol., 15:937–953, 1996.

    MATH  Google Scholar 

  32. R.H.J. Peerlings, M.G.D. Geers, R. de Borst, and W.A.M. Brekelmans. Int. J. Sol. Struct., 38:7723–7746, 2001.

    Article  MATH  Google Scholar 

  33. R.H.J. Peerlings, T.J. Massart, and M.G.D. Geers. Comp. Meth. Appl. Mech. Engng, 193:3403–3417, 2004.

    Article  MATH  Google Scholar 

  34. G. Pijaudier-Cabot and Z.P. Bažant. ASCE J. Engng Mech., 113:1512–1533, 1987.

    Article  Google Scholar 

  35. G. Pijaudier-Cabot and A. Huerta. Comp. Meth. Appl. Mech. Engng, 90:905–919, 1991.

    Article  Google Scholar 

  36. A. Rodríguez-Ferran, I. Morata, and A. Huerta. Comp. Meth. Appl. Mech. Engng, 193:3431–3455, 2004.

    Article  MATH  Google Scholar 

  37. A. Rodríguez-Ferran, I. Morata, and A. Huerta. Int. J. Num. An. Meth. Geom., 29:473–493, 2005.

    Article  MATH  Google Scholar 

  38. L.J. Sluys. Wave propagation, localisation and dispersion in softening solids. Dissertation, Delft University of Technology, 1992.

    Google Scholar 

  39. Z. Tang, S. Shen, and S.N. Atluri. Comp. Model. Engng Sci., 4:177–196, 2003.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harm Askes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Askes, H., Bennett, T., Kulasegaram, S. (2007). Meshless discretisation of nonlocal damage theories. In: Combescure, A., De Borst, R., Belytschko, T. (eds) IUTAM Symposium on Discretization Methods for Evolving Discontinuities. IUTAM Bookseries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6530-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6530-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6529-3

  • Online ISBN: 978-1-4020-6530-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics