High Time Resolution Observations of Cataclysmic Variables

  • S. P. Littlefair
Part of the Astrophysics and Space Science Library book series (ASSL, volume 351)


Cataclysmic Variables (CVs) show a wide range of time-dependent phenomena which make them ideal objects of study with high time-resolution instruments. The most rapid timescales observed in CVs are of the order of a few seconds, and thus CVs are relatively slow objects compared to some phenomena studied by the high time-resolution community. However, the rich and varied processes which occur in CVs make high time-resolution observations powerful tests of cutting-edge astrophysics. Here we present a review of high time-resolution observations of CVs to date, and underline their relevance to modern astrophysics.


Orbital Period Accretion Disc White Dwarf Roche Lobe Cataclysmic Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Arras, D. M. Townsley, and L. Bildsten. ewblock Pulsational Instabilities in Accreting White Dwarfs. ApJ, 643:L119–L122, June 2006.CrossRefADSGoogle Scholar
  2. 2.
    T. Augusteijn, K. Karatasos, M. Papadakis, G. Paterakis, S. Kikuchi, N. Brosch, E. Leibowitz, P. Hertz, K. Mitsuda, T. Dotani, W. H. G. Lewin, M. van del Klis, and J. van Paradijs. Coordinated X-ray and optical observations of Scorpius X-1. A8A, 265:177–182, November 1992.Google Scholar
  3. 3.
    R. Baptista. What can we learn from accretion disc eclipse mapping experiments?Astronomische Nachrichten, 325:181–184, March 2004.CrossRefADSGoogle Scholar
  4. 4.
    R. Baptista and A. Bortoletto. ewblock Eclipse Mapping of the Flickering Sources in the Dwarf Nova V2051 Ophiuchi. AJ, 128:411–425, July 2004.CrossRefADSGoogle Scholar
  5. 5.
    R. Baptista and M. S. Catalán. Changes in the structure of the accretion disc of EX Draconis through the outburst cycle. MNRAS,, 324:599–611, June 2001.CrossRefADSGoogle Scholar
  6. 6.
    R. Baptista, E. T. Harlaftis, and D. Steeghs. Eclipse maps of spiral shocks in the accretion disc of IP Pegasi in outburst. MNRAS,, 314:727–732, June 2000.CrossRefADSGoogle Scholar
  7. 7.
    R. Baptista, K. Horne, R. A. Wade, I. Hubeny, K. S. Long, and R. G. M. Rutten. HST spatially resolved spectra of the accretion disc and gas stream of the nova-like variable UX Ursae Majoris. MNRAS, 298:1079–1091, August 1998.CrossRefADSGoogle Scholar
  8. 8.
    A. Bruch. Studies of the flickering in cataclysmic variables. VI. The location of the flickering light source in HT Cassiopeiae, V2051 Ophiuchi, IP Pegasi and UX Ursae Majoris. A8A,359:998–1010, July 2000.Google Scholar
  9. 9.
    V. Dhillon and T. Marsh. ULTRACAM - studying astrophysics on the fastest timescales. New Astronomy Review, 45:91–95, January 2001.CrossRefADSGoogle Scholar
  10. 10.
    D. Dravins, L. Lindegren, E. Mezey, and A. T. Young. Atmospheric Intensity Scintillation of Stars. III. Effects for Different Telescope Apertures.PASP, 110:610–633, May 1998.CrossRefADSGoogle Scholar
  11. 11.
    W. J. Feline, V. S. Dhillon, T. R. Marsh, and C. S. Brinkworth. ULTRACAM photometry of the eclipsing cataclysmic variables XZ Eri and DV UMa. MNRAS , 355:1–10, November 2004.CrossRefADSGoogle Scholar
  12. 12.
    A. Garcia, L. Sodr#x000E1;, F. J. Jablonski, and R. J. Terlevich. Optical monitoring of quasars - I. Variability. MNRAS, 309:803–816, November 1999.CrossRefADSGoogle Scholar
  13. 13.
    G. T. Geertsema and A. Achterberg. Turbulence in differentially rotating thin disks - A multi-component cascade model. A8A, 255:427–442, February 1992.Google Scholar
  14. 14.
    R. D. Gehrz, J. W. Truran, R. E. Williams, and S. Starrfield. Nucleosynthesis in Classical Novae and Its Contribution to the Interstellar Medium. PASP, 110:3–26, January 1998.CrossRefADSGoogle Scholar
  15. 15.
    W. Herbst and V.S. Shevchenko. A Photometric Catalog of Herbig AE/BE Stars and Discussion of the Nature and Cause of the Variations of UX Orionis Stars.AJ, 118:1043–1060, August 1999.CrossRefADSGoogle Scholar
  16. 16.
    K. Horne. Images of accretion discs. I - The eclipse mapping method. MNRAS, 213:129–141, March 1985.ADSGoogle Scholar
  17. 17.
    K. Horne and M. C. Cook. UBV images of the Z Cha accretion disc in outburst. MNRAS, 214:307–317, May 1985.ADSGoogle Scholar
  18. 18.
    U. Kolb and I. Baraffe. Brown dwarfs and the cataclysmic variable period minimum. MNRAS, 309:1034–1042, November 1999.CrossRefADSGoogle Scholar
  19. 19.
    S. Larsson. Discovery of 1 second optical QPO in VV Puppis. Advances in Space Research, 8:305–308, 1988.CrossRefADSGoogle Scholar
  20. 20.
    J-P. Lasota. New Astronomy Review, 45:449, 2001.CrossRefADSGoogle Scholar
  21. 21.
    A. P. Linnell. UX Ursae Majoris. S8T, 8:166–+, May 1949.Google Scholar
  22. 22.
    A. P. Linnell. A Study of UX Ursae Majoris. Harvard College Observatory Circular, 455:1–13, 1950.ADSGoogle Scholar
  23. 23.
    T. R. Marsh and K. Horne. MNRAS, 235:269, 1988.ADSGoogle Scholar
  24. 24.
    T. Matsuda, M. Makita, H. Fujiwara, T. Nagae, K. Haraguchi, E. Hayashi, and H. M. J. Boffin. Numerical Simulation of Accretion Discs in Close Binary Systems and Discovery of Spiral Shocks. Ap8SS,, 274:259–273, 2000.MATHGoogle Scholar
  25. 25.
    C. W. Mauche. Correlation of the Quasi-Periodic Oscillation Frequencies of White Dwarf, Neutron Star, and Black Hole Binaries. ApJ, 580:423–428, November 2002.CrossRefADSGoogle Scholar
  26. 26.
    R. E. Nather and B. Warner. Observations of rapid blue variables. I. Techniques. MNRAS, 152:209, 1971.ADSGoogle Scholar
  27. 27.
    D. O’Donoghue. High Speed CCD Photometry. Baltic Astronomy, 4:519–526, 1995.ADSGoogle Scholar
  28. 28.
    R. G. M. Rutten, J. van Paradijs, and J. Tinbergen. A8A, 260:213, 1992.Google Scholar
  29. 29.
    D. A. Smith and V. S. Dhillon. MNRAS, 301:767, December 1998.CrossRefADSGoogle Scholar
  30. 30.
    D. Steeghs, E. T. Harlaftis, and K. Horne. Spiral structure in the accretion disc of the binary IP Pegasi. MNRAS, 290:L28–L32, September 1997.ADSGoogle Scholar
  31. 31.
    D. Steeghs, K. O’Brien, K. Horne, R. Gomer, and J. B. Oke. Emission-line oscillations in the dwarf nova V2051 Ophiuchi. MNRAS, 323:484–496, May 2001.CrossRefADSGoogle Scholar
  32. 32.
    S. E. Thompson. Mode Identification of DAVs with Time Series Spectroscopy. Bulletin of the American Astronomical Society, 37:1158–+, December 2005.ADSGoogle Scholar
  33. 33.
    D. M. Townsley, P. Arras, and L. Bildsten. Seismology of the Accreting White Dwarf in GW Librae. ApJ, 608:L105–L108, June 2004.CrossRefADSGoogle Scholar
  34. 34.
    D. M. Townsley and L. Bildsten. Measuring White Dwarf Accretion Rates via Their Effective Temperatures. ApJ, 596:L227–L230, October 2003.CrossRefADSGoogle Scholar
  35. 35.
    M. F. Walker. A Photometric Investigation of the Short-Period Eclipsing Binary, Nova DQ Herculis (1934).ApJ, 123:68–+, January 1956.CrossRefADSGoogle Scholar
  36. 36.
    B. Warner. Cataclysmic Variable Stars. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
  37. 37.
    B. Warner. Rapid Oscillations in Cataclysmic Variables. PASP, 116:115–132, February 2004.CrossRefADSGoogle Scholar
  38. 38.
    B. Warner and R. E. Nather. Observations of rapid blues variables. II. U Gem. MNRAS, 152:219, 1971.ADSGoogle Scholar
  39. 39.
    B. Warner and E. L. Robinson. White dwarfs-More rapid variables. Nature, 239:2–7, September 1972.ADSGoogle Scholar
  40. 40.
    J. H. Wood and C. S. Crawford. MNRAS, 222:645, 1986.ADSGoogle Scholar
  41. 41.
    J. H. Wood, K. Horne, G. Berriman, R. Wade, D. O’Donoghue, and B. Warner. MNRAS, 219:629, 1986.ADSGoogle Scholar
  42. 42.
    J. H. Wood, K. Horne, G. Berriman, and R. A. Wade. MNRAS, 341:974, 1989.ADSGoogle Scholar
  43. 43.
    P. A. Woudt and B. Warner. SDSS J161033.64-010223.3: a second cataclysmic variable with a non-radially pulsating primary. MNRAS, 348:599–602, February 2004.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. P. Littlefair
    • 1
  1. 1.Dept of Physics and AstronomyUniversity of Sheffield, S3 7RHSheffieldUK

Personalised recommendations