Skip to main content

Analysis Of Multibeam Seafloor Imagery Of The Laurentian Fan And The 1929 Grand Banks Landslide Area

  • Chapter
Submarine Mass Movements and Their Consequences

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 27))

The 1929 Grand Banks earthquake, landslide and tsunami were pivotal in geologic history as they led to the first unequivocal recognition of a landslide-triggered tsunami and turbidity current. The event is well constrained in terms of trigger, timing, sequence of events and impact. The landslide site was surveyed in September of 2006 with a 12 kHz multibeam echosounder. Regionally, these bathymetric data show canyons, valleys and gullies, somewhat typical of the continental slope in the region. No major headscarp related to the event is recognized (cf. the Storegga Slide). Most significant are a series of shallow gullies with small headwalls about mid-slope. Upslope from these is a series of shallow escarpments that probably represent upslope retrogression of the failure. The landslide appears to have been relatively shallow (top 5-100 m) and laterally extensive. There is no evidence of a single massive submarine landslide with major headscarp and debris lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J. and Halchuk S., 2003. Fourth generation seismic hazard maps of Canada: Values for over 650 Canadian localities intended for the 2005 National Building Code of Canada. Geological Survey of Canada Open File 4459: 1–155.

    Google Scholar 

  • Bent, A.L., 1995. A complex double-couple source mechanism for the Ms 7.2 1929 Grand Banks earthquake. Bulletin of the Seismological Society of America, Vol. 85, p. 1003–1020.

    Google Scholar 

  • Bonifay, D. and Piper, D.J.W., 1988. Probable Late Wisconsinan ice margin on the upper continental slope off St. Pierre Bank, eastern Canada; Canadian Journal of Earth Sciences, Vol. 25, p. 853–865.

    Article  Google Scholar 

  • de Moustier, C., 2001. Field Evaluation of Sounding Accuracy in Deep Water Multibeam Swath Bathymetry. IEEE Oceans Conference and Exhibition, Honolulu, Hawaii, USA, Vol. 3, p.1761–1765.

    Google Scholar 

  • Doxsee, W.W., 1948. The Grand Banks Earthquake of November 18, 1929. Publications of the Dominion Observatory, Vol. 7.

    Google Scholar 

  • Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E., and Kulikov, E.A., 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, Vol. 215, p. 45–57.

    Article  Google Scholar 

  • Gregory, J.W., 1929, The earthquake south of Newfoundland and submarine canyons. Nature, Vol. 124, p. 945.

    Article  Google Scholar 

  • Gregory, J.W., 1931. The earthquake off the Newfoundland banks of 18 November 1929. Geographical Journal, Vol. 77, p. 123–129.

    Article  Google Scholar 

  • Haflidason, H., Sejrup, H.P., Berstad, I.M., Nygard, A., Richter, T., Bryn, P., Lien, R. and Berg, K., 2002. Weak layer features on the northern Storegga Slide escarpment, in J. Mienert and P. Weaver, eds., European margin sediment dynamics: Berlin, Springer, p. 55–63.

    Google Scholar 

  • Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., Berg, K. and Masson, D., 2004. The Storegga Slide: architecture, geometry and slide development. Marine Geology, Vol 213, p. 201–234.

    Article  Google Scholar 

  • Heezen, B.C. and Drake, G.L., 1964. Grand Banks slump. American Association of Petroleum Geologist Bulletin, Vol 48, p. 44–108.

    Google Scholar 

  • Heezen, B.C. and Ewing, M., 1952. Turbidity currents and submarine slumps and the 1929 Grand Banks earthquake. American Journal of Science, Vol 250, p. 849–873.

    Google Scholar 

  • Heezen, B.C., Ericson, D.B. and Ewing, M., 1954. Further evidence for a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Research, Vol 1, p. 193–202.

    Article  Google Scholar 

  • Hodgson, E.A. and Doxsee, W.W., 1930. The Grand Banks earthquake, November 18, 1929. Eastern Section of the Seismological Society of America, Proceedings of the 1930 meeting, Washington D.C., p. 72-79.

    Google Scholar 

  • Hughes Clarke, J.E., 1990. Late stage slope failure in the wake of the 1929 Grand Banks earthquake. Geo-Marine Letters, Vol. 10, p. 69–79.

    Article  Google Scholar 

  • Hughes Clarke, J.E., Mayer, L.A., Piper, D.J.W. and Shor, A.N., 1989. Pisces IV submersible observations in the epicentral region of the 1929 Grand Banks earthquake. In: Piper, D.J.W. (ed), Submersible observations off the east coast of Canada, Geological Survey of Canada Paper 88-20, p. 57-69.

    Google Scholar 

  • Hughes Clarke, J.E., Shor, A.N., Piper, D.J.W. and Mayer, L.A., 1990. Large-scale current-induced erosion and deposition in the path of the 1929 Grand Banks Turbidity Current, Sedimentology, Vol. 37, p. 613–629.

    Article  Google Scholar 

  • Jenner, K.A., Piper, D.J.W.P., Campbell, D.C. and Mosher, D.C., 2006. Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada. Sedimentology, Vol. 53., 20 pp.

    Google Scholar 

  • Keith, A., 1930. The Grand Banks earthquake. Eastern Section of the Seismological Society of America, Supplement to the Proceedings of the 1930 Meeting, Washington D.C., p. 1-9.

    Google Scholar 

  • Masson, D.G., Gardner, J.V., Parson, L.M., and Field, M.E., 1985. Morphology of Upper Laurentian Fan using GLORIA Long-range side-scan sonar. American Association of Petroleum Geologists Bulletin, Vol. 69, p. 950–959.

    Google Scholar 

  • McCall, C., 2006. Character and distribution of the 1929 landslides. Unpublished M.Sc (applied), St. Marys University, Halifax, NS.

    Google Scholar 

  • McCall, C., Morrison, M.L. and Piper, D.J.W., 2005. Geological data from the St. Pierre Slope around the epicentre of the 1929 Grand Banks earthquake, Geological Survey of Canada, Open File 4879, 15 pp (+CD-Rom).

    Google Scholar 

  • Mosher, D.C., Piper, D.J.W., Vilks, G., Aksu, A.E., and Fader, G.B., 1989. Evidence for Wisconsinan glaciations in the Verrill Canyon area, Scotian Slope. Quaternary Research, 31: 27–40.

    Article  Google Scholar 

  • Mosher, D.C., Moran, K. and Hiscott, R.N, 1994. Late Quaternary sediment, sediment mass-flow processes and slope stability on the Scotian Slope: Sedimentology, v. 41, p. 1039– 1061.

    Article  Google Scholar 

  • Mosher, D.C., Piper, D.J.W.P., Campbell, D.C., and Jenner, K.A., 2004. Near surface geology and sediment failure geohazards of the central Scotian Slope. American Association of Petroleum Geologists Bulletin, 88, p. 703–723.

    Google Scholar 

  • Mosher, D.C., Bigg, S. and LaPierre, A. 2006a. 3D seismic versus multibeam sonar seafloor surface renderings for geohazard assessment: Case examples from the central Scotian Slope. The Leading Edge, v. 25, p. 1484–1494.

    Article  Google Scholar 

  • Normark, W.R., Piper, D.J.W., Romans, B.W., Covault, J.A., Dartnell, P. and Sliter, R.W., 2007. Submarine canyon and fan systems of the California Continental Borderland. GSA Special Paper (in press)

    Google Scholar 

  • Pe-Piper, G. and Piper, D J W. 2004. The effects of strike-slip motion along the Cobequid - Chedabucto -southwest Grand Banks fault system on the Cretaceous-Tertiary evolution of Atlantic Canada. Canadian Journal of Earth Sciences, Vol. 41, p. 799–808.

    Article  Google Scholar 

  • Piper, D.J.W., 2000. Pleistocene ice outlets on the central Scotian Slope, Offshore Nova Scotia. Geological Survey of Canada Current Research 2000-D7, 8 pp.

    Google Scholar 

  • Piper, D.J.W. and Aksu, A.E., 1987. The Source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets, Geo-Marine Letters, Vol. 7, p. 177–182.

    Article  Google Scholar 

  • Piper, D.J.W., and MacDonald, A. 2002. Timing and position of late Wisconsinan ice margins on the upper slope seaward of the Laurentian Channel. Géographie physique et Quaternaire, Vol. 55, p. 131–140.

    Google Scholar 

  • Piper, D.J.W. and Normark, W.R., 1982. Effects of the 1929 Grand Banks earthquake on the continental slope off eastern Canada. Geological Survey of Canada Current Research, Part B, Paper 82-01B, p. 147-151.

    Google Scholar 

  • Piper, D.J.W., Sparkes, R., Mosher, D.C., Shor, A.N. and Farre, J.A., 1985a. Seabed instability near the epicentre of the 1929 Grand Banks earthquake. Geological Survey of Canada, Open File 1131, 29 pp.

    Google Scholar 

  • Piper, D.J.W., Farre, J.A. and Shor, A.N., 1985b. Late Quaternary slumps and debris flows on the Scotian Slope. Geological Society of America Bulletin, 96: 1508–1517.

    Article  Google Scholar 

  • Piper, D.J.W., Shor, A.N. Clarke, J.E.H., 1988. The 1929 “Grand Banks ” Earthquake, Slump, and Turbidity Current. In: Clifton, H.E. (ed), Sedimentologic Consequences of Convulsive Geologic Events, Geological Society of America, Special Paper, no. 229, p. 77-92.

    Google Scholar 

  • Piper, D.J.W., Cochonat, P., Ollier, G., Le Drezen, E., Morrison, M., Baltzer, A., 1992. Evolution progressive d un glissement rotationnel en un courant de turbidite : cas du seisme de 1929 des Grands Bancs [Terre - Neuve]. Comptes rendus de l’academie des sciences, Serie II, Mechanique, Physique, Chimie, sciences de l’univers, sciences de la terre, tome 314, p. 1057–1064.

    Google Scholar 

  • Piper, D.J.W., Cochonat, P. and Morrison, M.L., 1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology, Vol. 46, p. 79–97.

    Article  Google Scholar 

  • Piper, D.J.W., Mosher, D.C., Gauley, B-J., Jenner, K. and Campbell, D.C., 2003. The chronology and recurrence of submarine mass movements on the continental slope off southeastern Canada. In: Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Kluwer, Dordrecht, The Netherlands, p. 299–306.

    Google Scholar 

  • Piper, D.J.W., Macdonald, A.W.A., Ingram, S., Williams, G.L. and McCall, C., 2005. Late Cenozoic architecture of the St. Pierre Slope. Canadian Journal of Earth Sciences, Vol. 42, p. 1987–2000, doi: 10.1139/E05-059.

    Article  Google Scholar 

  • Piper, D.J.W., Shaw, J. and Skene, K.I., 2007. Stratigraphic and sedimentological evidence for late Wisconsinan sub-glacial outburst floors to Laurentian Fan. Palaeogeography, Palaeoclimatorlogy, Palaeoecology, Vol. 246, p. 101–119, doi: 10.1016/ j.palaeo.2006.10.029.

    Article  Google Scholar 

  • Shaw, J., Piper, D.J.W., Fader, G.B., King, E.L., Todd, B.J., Bell, T., Batterson, M.J., and Liverman, D.J.E., 2006. A conceptual model of the deglaciation of Atlantic Canada. Quaternary Science Reviews, Vol. 25, p. 2055–2081.

    Article  Google Scholar 

  • Shimeld, J. 2004. A comparison of salt tectonic subprovinces beneath the Scotian Slope and Laurentian Fan. In: P.J. Post, D.L. Olson, K.T. Lyons, S.L. Palmes, P.F. Harrison, and N. Rosen (eds). Salt-sediment interactions and hydrocarbon prospectivity: concepts, applications, and case studies for the 21st century. 24th Annual Gulf Coast Section of the Society of Economic Paleontologists and Mineralogists Foundation Bob F. Perkins Research Conference, Houston, Texas, Dec. 5-8, 2004.

    Google Scholar 

  • Shor, A.N. and Piper, D.J.W., 1989. A large Late Pleistocene blocky debris flow on the central Scotian Slope. Geomarine Letters, 9, 153–160.

    Google Scholar 

  • Shor, A.N., Piper, D.J.W., Hughes Clarke, J.E., and Mayer, L.A., 1990. Giant flute - like scour and other erosional features formed by the 1929 Grand Banks Turbidity Current. Sedimentology, Vol. 37, p. 631–645.

    Article  Google Scholar 

  • Skene, K.I. and Piper, D.J.W. 2003, Late Quaternary stratigraphy of Laurentian Fan: a record of events off the eastern Canadian continental margin during the last deglacial period; Quaternary International, Vol. 99-100, p. 135–152.

    Article  Google Scholar 

  • Stow, D.A.V., 1981. Laurentian Fan: Morphology, sediments, processes and growth pattern. American Association of Petroleum Geologists Bulletin, Vol. 65, p. 375–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mosher, D.C., Piper, D.J.W. (2007). Analysis Of Multibeam Seafloor Imagery Of The Laurentian Fan And The 1929 Grand Banks Landslide Area. In: Lykousis, V., Sakellariou, D., Locat, J. (eds) Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6512-5_9

Download citation

Publish with us

Policies and ethics