The Reactions of Sulfuric Acid with Biogenic Criegee Intermediates or Secondary Ozonides as a Possible Source of Nucleation Precursors

  • Theo Kurtén
  • Boris Bonn
  • Hanna Vehkamäki
  • Markku Kulmala

We have studied the reactions of sulfuric acid with stabilized Criegee Intermediates (sCIs) and secondary ozonides formed in the ozonolysis of biogenic mono- and sesquiterpenes. Activation energy calculations on model species show that the reaction between sulfuric acid and sCIs is almost barrierless. If the lifetime of biogenic sCIs in the atmosphere is sufficiently long for them to undergo bimolecular reactions, then the sCI plus sulfuric acid reaction could account some part of the organically assisted new-particle formation events observed in the atmosphere. If, on the other hand, unimolecular formation of secondary ozonides is the main sink reaction of sCIs, then the reactions between sulfuric acid and the secondary ozonides could be of atmospheric importance. For the secondary ozonide formed from a-pinene, we have found a strongly exothermic reaction which results in the formation of a sulfuric acid monoester plus a water molecule. However, this reaction may have high activation energy.

Keywords Nucleation, sulfuric acid, Criegee intermediate, secondary ozonide, quantum chemistry

Keywords

Peroxide Sulfuric Acid Carbonyl Alkene Boris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonn, B., Schuster, G., and Moortgat, G.K., J. Phys. Chem. A, 106, 2869–2881 (2002).CrossRefGoogle Scholar
  2. 2.
    Chuong, B., Zhang, J.Y., and Donahue, N.M., J. Am. Chem. Soc., 126, 12363–12373 (2004).CrossRefGoogle Scholar
  3. 3.
    Kurtén, T., Bonn, B., Vehkamäki, H., and Kulmala, M., J. Phys. Chem. A, in press (2007).Google Scholar
  4. 4.
    Becke, A.D., J. Chem. Phys., 98, 5648–5652 (1993).CrossRefADSGoogle Scholar
  5. 5.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 37, 785–789 (1988).CrossRefADSGoogle Scholar
  6. 6.
    Christiansen, O., Koch, H., and Jørgensen, P., Chem. Phys. Lett., 243, 409–418 (1995).CrossRefADSGoogle Scholar
  7. 7.
    Hättig, C. and Weigend, F., J. Chem. Phys., 113, 5154–5161 (2000).CrossRefADSGoogle Scholar
  8. 8.
    Ryzhkov, A.B. and Ariya, P.A., Chem. Phys. Lett., 419, 479–485 (2006).CrossRefADSGoogle Scholar
  9. 9.
    Tobias, H.J. and Ziemann, P.J., Phys. Chem. A, 105, 6129–6135 (2001).CrossRefGoogle Scholar
  10. 10.
    Surratt, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., and Seinfeld, J.H., Environ. Sci. Technol., 41, 517–527 (2007).CrossRefGoogle Scholar
  11. 11.
    Frisch, M.J. et al., Gaussian 03, Revision C.02, Gaussian, Wallingford, CT (2004).Google Scholar
  12. 12.
    Ahlrichs, R., Bär, M., Häser, M., Horn, H., and Kölmel, C., Chem. Phys. Lett., 162, 165–169 (1989).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Theo Kurtén
    • 1
  • Boris Bonn
    • 1
  • Hanna Vehkamäki
    • 1
  • Markku Kulmala
    • 1
  1. 1.Department of Physical SciencesUniversity of HelsinkiFinland

Personalised recommendations