Advertisement

Dust Intrusion Influence on Atmospheric Boundary Layer Using Lidar Data

  • Sabina Stefan
  • Anca Nemuc
  • C. Talianu
  • D. Nicolae
  • V. Filip
  • J. Ciuciu
Conference paper

The PBL (Planetary Boundary Layer) is the lowest part of the troposphere and plays an important role in our everyday live. Diverse applications of boundarylayer meteorology require better understandings of the PBL. The depth of the PBL varies greatly in space and time, but knowledge of the depth of PBL aid in the validation of parameterizations of the PBL in general circulation models and improve our abilities to model the coupling between the atmosphere and the Earth’s surface. Lidar (Light Detection and Ranging) measurements provide useful information on the structure of PBL. The aim of this paper is to study the influence of dust intrusion on mixed layer. To detect the mixed layer depth we used the gradient method on two cases: dust intrusion and background aerosol. We discuss the results using complementary information as synoptic maps, backtrajectories and radio soundings. Similar results for the PBL height obtained from lidar data and radio sounding showed in this paper demonstrates the importance of the remote sensing measurements in atmosphere.

Keywords Lidar, dust intrusion, PBL

Keywords

Atmospheric Boundary Layer Planetary Boundary Layer Mixed Layer Depth Lidar Data Free Troposphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strawbridge, K.B. and Snyden, B.J., Planetary boundary layer height determination during Pacific 2001 using the advantage of scanning lidar instrument, Atmos. Environ., 38, 5861–5871 (2004).CrossRefGoogle Scholar
  2. 2.
    Menut L., Flamant C., Pelon J., and Flamant P.H., Urban boundary layer height determination from lidar measurements over Paris, Appl. Opt., 38, 945–954 (1999).CrossRefADSGoogle Scholar
  3. 3.
    Talianu C., Nicolae, D., Ciuciu, J., Ciobanu, M., Babin, V., Planetary boundary layer height detection from LIDAR measurements, J. Optoelectron. Adv. Mater., 8(1), 243–246 (2006).Google Scholar
  4. 4.
    Nicolae D. and Cristescu, C.P., Laser remote sensing of tropospheric aerosol, J. Optoelectron. Adv. Mater., 8(5), 1781–1795 (2006).Google Scholar
  5. 5.
    Draxler, R.R. and Hess, G.D., An overview of the Hysplit_4 modeling system for trajectories, dispersion, and deposition, Aust. Met. Mag., 47, 295–308 (1998).Google Scholar
  6. 6.
    Draxler, R.R., Boundary layer isentropic and kinematic trajectories duing the August 1993 North Atlantic regional experiment intensive, J. Geophys. Res., 101(D22), 29255–2926 (1996).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sabina Stefan
    • 1
  • Anca Nemuc
    • 2
  • C. Talianu
    • 1
  • D. Nicolae
    • 1
  • V. Filip
    • 2
  • J. Ciuciu
    • 1
  1. 1.National Institute for R&D of Optoelectronics INOEBucharestRomania
  2. 2.Faculty of Physics, Atmospheric Physics DeptUniversity of BucharestBucharestRomania

Personalised recommendations