Skip to main content

Computation of Nucleation Rates for n-Nonane Using the Gradient Theory

  • Conference paper
Nucleation and Atmospheric Aerosols

The gradient theory is used to compute the work of formation of critical clusters of n-nonane, the dependence of the surface tension on the cluster size, and the rates of homogeneous vapor–liquid nucleation of n-nonane droplets. An adjustment of the Peng–Robinson (P–R) equation of state is suggested in order to achieve accurate gradient theory results.

Keywords Homogeneous nucleation, Gradient theory, surface tension, Tolman length, nonane

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tolman, R.C., J. Chem. Phys., 17, 333–337 (1949).

    Article  ADS  Google Scholar 

  2. Dillmann, A., and Meier, G.E.A., J. Chem. Phys., 94, 3872–3884 (1991).

    Article  ADS  Google Scholar 

  3. Kalikmanov, V.I., J. Chem. Phys., 124, 124505 (2006).

    Article  ADS  Google Scholar 

  4. Van der Waals, J.D., Z. Phys. Chem. (Leipzig), 13, 657–725 (1894).

    Google Scholar 

  5. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 28, 258–267 (1958).

    Article  ADS  Google Scholar 

  6. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 31, 688–699 (1959).

    Article  ADS  Google Scholar 

  7. Davis, H.T., Statistical Mechanics of Phases, Interfaces, and Thin Films, New York: VCH Publishers (1996).

    Google Scholar 

  8. Peng, D.-Y., and Robinson, D. B., Ind. Eng. Chem., Fundam. 15, 59–64 (1976).

    Article  MATH  Google Scholar 

  9. Lemmon, E.W. and Span, R., J. Chem. Eng. Data, 51, 785–850 (2006).

    Article  Google Scholar 

  10. Hung, C.-H., Krasnopoler, M.J., and Katz, J.L., J. Chem. Phys., 90, 1856–1865 (1989).

    Article  ADS  Google Scholar 

  11. Viisanen, Y., Wagner, P.E., and Strey, R., J. Chem. Phys., 108, 4257–4266 (1998).

    Article  ADS  Google Scholar 

  12. Luijten, C.C. M., Peeters, P., and Van Dongen, M.E.H., J. Chem. Phys., 111, 8335–8544 (1999).

    Google Scholar 

  13. Jasper, J.J., Kerr E.R., and Gregorich, F., J. Am. Chem. Soc., 75, 5252–5254 (1953).

    Article  Google Scholar 

  14. Becker, R. and Döring, W., Ann. Phys. 5. Folge, 24, 719–752 (1935).

    Article  MATH  Google Scholar 

  15. Girshick, S.L. and Chiu, C.-P., J. Chem. Phys., 93, 1273–1277 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Labetski, D.G., Hrubý, J., Vinš, V., van Dongen, M.E.H. (2007). Computation of Nucleation Rates for n-Nonane Using the Gradient Theory. In: O'Dowd, C.D., Wagner, P.E. (eds) Nucleation and Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6475-3_19

Download citation

Publish with us

Policies and ethics