Simulation of Strongly Stratified Fluids

  • G. Brethouwer
  • P. Billant
  • E. Lindborg
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)


Stably and strongly stratified turbulent flows have been studied by employing scaling analysis of the governing equations along the lines of [1], [2] and [3]. The scaling analysis suggests the existence of two different dynamical states. The parameter determining the state is R = ReF h2, where Re and Fh are the Reynolds number and horizontal Froude number, respectively. If R ≫ 1, viscous forces are negligible and the turbulence is strongly anisotropic but three-dimensional and causes a forward energy cascade. The vertical length scale lv scales as lvU/N (U is a horizontal velocity scale and N is the Brunt-Väisälä frequency). If R ≪ 1, horizontal inertial forces are balanced by vertical viscous shearing and lvlhRe-1/2 (lh is a horizontal length scale). The scaling analysis has been confirmed by direct numerical simulations of homogeneous stratified turbulence. Spectra have been studied as well.


stratification DNS turbulence geophysical flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billant P, Chomaz JM (2001) Phys Fluids 13:1645-1651CrossRefMathSciNetGoogle Scholar
  2. 2.
    Godoy-Diana R, Chomaz JM, Billant P (2004) J Fluid Mech 504:229-238MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lindborg E (2006) J Fluid Mech 550:207-242MATHCrossRefGoogle Scholar
  4. 4.
    Riley JJ, deBruynKops SM (2003) Phys Fluids 15:2047-2059CrossRefMathSciNetGoogle Scholar
  5. 5.
    Smith LM, Waleffe, F (2002) J Fluid Mech 451:145-168MATHCrossRefGoogle Scholar
  6. 6.
    Waite ML, Bartello P (2004) J Fluid Mech 517:281-308MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Praud O, Fincham AM, Sommeria J (2005) J Fluid Mech 522:1-33MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brethouwer G, Billant P, Lindborg E, Chomaz JM (2006) J Fluid Mech, submittedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • G. Brethouwer
    • 1
  • P. Billant
    • 2
  • E. Lindborg
    • 1
  1. 1.Department of MechanicsKTHStockholmSweden
  2. 2.Ecole PolytechniqueLadHyXPalaiseau CedexFrance

Personalised recommendations