Advertisement

Decaying 2D Turbulence in Bounded Domains: Influence of the Geometry

  • Kai Schneider
  • Marie Farge
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)

Abstract

We present direct numerical simulation of two-dimensional decaying turbulence in wall bounded domains. The Navier-Stokes equations are solved in a periodic square domain using the vorticity-velocity formulation. The bounded domain is imbedded in the periodic domain and the no-slip boundary conditions on the wall are imposed using a volume penalisation technique. The numerical integration is done with a Fourier pseudo-spectral method combined to a semi-implicit time discretization with adaptive time stepping. We study the influence of the geometry of the domain on the flow dynamics and in particular on the long time behaviour of the flow. We consider different geometries, a circle, a square, a triangle and a torus and we show that the geometry plays a crucial role for the decay scenario.

Keywords

2D turbulence penalisation bounded geometry long time decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clercx HJH, Nielsen AH, Torres DJ, Coutsias EA (2001) Eur J Mech B - Fluids 20:557-576.MATHCrossRefGoogle Scholar
  2. 2.
    Li S, Montgomery D, Jones B (1997) Theor Comput Fluid Dyn 9:167-181.MATHCrossRefGoogle Scholar
  3. 3.
    Schneider K, Farge M (2005) Phys Rev Lett 95:244502.CrossRefGoogle Scholar
  4. 4.
    Segre E, Kida S (1998) Fluid Dyn Res 23:89-112.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Davidson P (2004) Turbulence. An Introduction for Scientists and Engineers Oxford University Press.Google Scholar
  6. 6.
    Leith CE (1984) Phys Fluids, 27(6):1388-1395.MATHCrossRefGoogle Scholar
  7. 7.
    Joyce G, Montgomery D (1973) J Plasma Phys 10:107-121.CrossRefGoogle Scholar
  8. 8.
    Montgomery D, Joyce G (1974) Phys Fluids 17:1139-1145.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Robert R, Sommeria J (1991) J Fluid Mech 229:291-310.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kondoh Y, Yoshizawa M, Nakano A, Yabe T (1996) Phys Rev E 54(3): 3017-3020.CrossRefGoogle Scholar
  11. 11.
    van de Konijnenberg JA, Flor JA, van Heijst GJF (1998) Phys Fluids 10(3): 595-606.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Angot P, Bruneau CH, Fabrie P (1999) Numer Math 81:497-520.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Schneider K (2005) Comput Fluids 34:1223-1238.MATHCrossRefGoogle Scholar
  14. 14.
    Kraichnan RH, Montgomery D (1980) Rep Progr Phys 43:547-619.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Montgomery D, Matthaeus WH, Stribling WT, Martinez D, Oughton S (1992) Phys Fluids A 4:3-6.MATHCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kai Schneider
    • 1
  • Marie Farge
    • 2
  1. 1.MSNM-CNRS & CMIUniversité de ProvenceMarseilleFrance
  2. 2.LMD-CNRSEcole Normale SupérieureParisFrance

Personalised recommendations