Acceleration Statistics of Inertial Particles from High Resolution DNS Turbulence

  • Federico Toschi
  • Jeremie Bec
  • Luca Biferale
  • Guido Boffetta
  • Antonio Celani
  • Massimo Cencini
  • Alessandra S. Lanotte
  • Stefano Musacchio
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)


We present results from recent direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, with grid resolution up to 5123 and ≈ 185. By following the trajectories of millions of particles with different Stokes numbers, St ∈ [0.16 : 3.5], we are able to characterize in full detail the statistics of particle acceleration. We focus on the probability density function of the normalised acceleration a/arms and on the behaviour of their rootmean-squared acceleration arms as a function of both St and . We explain our findings in terms of two concurrent mechanisms: particle clustering, very effective for small St, and filtering induced by finite particle response time, taking over at larger St.


Lagrangian turbulence heavy particles Stokes particles acceleration statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bec J, Biferale L, Cencini M, Lanotte AS, Musacchio S, Toschi F (2006) Clusters and voids of heavy particles in turbulent flows. In this same volume.Google Scholar
  2. 2.
    Maxey MR, Riley J (1983) Phys Fluids 26:883–889MATHCrossRefGoogle Scholar
  3. 3.
    Chen S, Doolen GD, Kraichnan RH, She ZS (1993) Phys Fluids A 5:458–463CrossRefGoogle Scholar
  4. 4.
    Sawford BL, Yeung PK, Borgas MS, Vedula P, La Porta A, Crawford AM, Bodenschatz E (2003) Phys Fluids 15: 3478–3489CrossRefGoogle Scholar
  5. 5.
    La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Nature 409:1017CrossRefGoogle Scholar
  6. 6.
    Ayyalasomayajula S, Gylfason A, Collins LR, Bodenschatz E, Warhaft Z (2006) Phys Rev Lett 97:144507CrossRefGoogle Scholar
  7. 7.
    Bec J, Biferale L, Boffetta G, Celani A, Cencini M, Lanotte A, Musacchio S, Toschi F (2006) J Fluid Mech 550:349–358MATHCrossRefGoogle Scholar
  8. 8.
    Cencini M, Bec J, Biferale L, Boffetta G, Celani A, Lanotte A, Musacchio S, Toschi F (2006) J Turbul 7:1–16CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Federico Toschi
    • 1
    • 2
  • Jeremie Bec
    • 3
  • Luca Biferale
    • 4
  • Guido Boffetta
    • 5
  • Antonio Celani
    • 6
  • Massimo Cencini
    • 7
    • 8
  • Alessandra S. Lanotte
    • 9
  • Stefano Musacchio
    • 10
  1. 1.Viale del Policlinico 137CNR-IACRomaItaly
  2. 2.Sezione di FerraraINFNFerraraItaly
  3. 3.CNRS Observatoire de la Côte d’AzurNice Cedex 4France
  4. 4.Dept. of Physics and INFNUniversity of Rome “Tor Vergata”RomaItaly
  5. 5.Dept. of Physics and INFNUniversity of TorinoTorinoItaly
  6. 6.CNRS, INLNValbonneFrance
  7. 7.SMC-INFM c/o Dept. of PhysicsUniversity of Rome “La Sapienza”RomaItaly
  8. 8.CNR-ISCRomaItaly
  9. 9.Sezione di LecceCNR-ISAC and INFNLecceItaly
  10. 10.Dept. of Physics and INFNUniversity of TorinoTorinoItaly

Personalised recommendations