Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 4))

  • 1157 Accesses

Abstract

The contributions of numerical simulations to the changes that have taken place during the past twenty years in our understanding of near-wall turbulence, and of the dissipative scales of isotropic flows, are briefly reviewed. It is argued that both problems have moved over this time from empirical observations to relatively coherent theoretical models, and that much of the reason is that they could be simulated cheaply enough to subject them to conceptual experiments. This required a lapse of ten to fifteen years after they were first computed, over which time the cost of simulations decreased by a factor of 100. Simulations of the logarithmic layer and of the inertial energy cascade and now beginning to be affordable. Both are still too expensive to experiment with them, but it is argued that, if history can be taken as a guide, both problems will become routinely computable in the next decade, and that we will then be able to attack their dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press

    Google Scholar 

  2. Brown GL, Roshko A (1974) J Fluid Mech 64:775–816

    Article  Google Scholar 

  3. Kim J, Moin P, Moser RD (1987) J Fluid Mech 177:133–166

    Article  MATH  Google Scholar 

  4. Robinson SK (1991) Ann Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  5. Kim HT, Kline SJ, Reynolds WC (1971) J Fluid Mech 50:133–160

    Article  Google Scholar 

  6. Jiménez J, Moin P (1991) J Fluid Mech 225:221–240

    Article  Google Scholar 

  7. Hamilton JM, Kim J, Waleffe F (1995) J Fluid Mech 287:317–348

    Article  MATH  Google Scholar 

  8. Jiménez J, Pinelli A (1999) J Fluid Mech 389:335–359

    Article  MATH  MathSciNet  Google Scholar 

  9. Jiménez J, Kawahara G, Simens MP, del Álamo JC (2004) The near-wall structures of turbulent wall flows. In: Kida S, (ed.) IUTAM Symp. on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics, 53–70, Springer

    Google Scholar 

  10. Jiménez J, Kawahara G, Simens MP, Nagata M, Shiba M (2005) Phys Fluids 17:015105

    Article  Google Scholar 

  11. Kawahara G, Kida S (2001) J Fluid Mech 449:291–300

    Article  MATH  MathSciNet  Google Scholar 

  12. Toh S, Itano T (2003) J Fluid Mech 481:67–76

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoyas S, Jiménez J (2006) Phys Fluids 18:011702

    Article  Google Scholar 

  14. Flores O, Jiménez J (2006) J Fluid Mech 566:357–376

    Article  MATH  Google Scholar 

  15. Kolmogorov AN (1941) Dokl Akad Nauk SSSR 30:301–305. Reprinted in Proc. R. Soc. London. A 434, 9–13 (1991)

    MathSciNet  Google Scholar 

  16. Batchelor GK, Townsend AA (1949) Proc Roy Soc London A 199:238–255

    Article  MATH  Google Scholar 

  17. Kuo AY, Corrsin S (1972) J Fluid Mech 56:447–479

    Article  Google Scholar 

  18. Siggia ED (1994) J Fluid Mech 107:375–406

    Article  Google Scholar 

  19. She Z, Jackson E, Orszag SA (1990) Nature 344:226–228

    Article  Google Scholar 

  20. Vincent A, Meneguzzi M (1991) J Fluid Mech 225:1–25

    Article  MATH  Google Scholar 

  21. Jiménez J, Wray AA, Saffman PG, Rogallo RS (1993) J Fluid Mech 255:65–90

    Article  MATH  MathSciNet  Google Scholar 

  22. Douady S, Couder Y, Brachet ME (1991) Phys Rev Lett 67:983–986

    Article  Google Scholar 

  23. Belin F, Tabeling P, Willaime H (1996) Physica D 93:52–63

    Article  MATH  Google Scholar 

  24. Tanahashi M, Iwase S, Miyauchi T (2001) J Turbul 2:1–17

    Article  MathSciNet  Google Scholar 

  25. Tanahashi M, Kang SJ, Miyamoto T, Shiokawa S, Miyauchi T (2004) Int J Heat Fluid Flow 25:331–340

    Article  Google Scholar 

  26. Passot T, Politano H, Sulem PL, Angilella JR, Meneguzzi M (1995) J Fluid Mech 282:313–338

    Article  MATH  MathSciNet  Google Scholar 

  27. Verzicco R, Jiménez J, Orlandi P (1995) J Fluid Mech 299:367–388

    Article  MATH  MathSciNet  Google Scholar 

  28. Tabeling P, Willaime H (2002) Phys Rev E 65:066301

    Article  MathSciNet  Google Scholar 

  29. Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A (2003) Phys Fluids 15:L21–L24

    Article  Google Scholar 

  30. Jiménez J, Wray AA (1998) J Fluid Mech 373:255–285

    Article  MATH  MathSciNet  Google Scholar 

  31. Yakhot V, Sreenivasan KR (2005) J Stat Phys 121:823–841

    Article  MATH  MathSciNet  Google Scholar 

  32. van Veen L, Kida S, Kawahara G (2006) Fluid Dyn Res 38:19–46

    Article  MATH  Google Scholar 

  33. Kida S (1985) J Phys Soc Japan 54:2132–2136

    Article  Google Scholar 

  34. Pelz RB (2001) J Fluid Mech 444:299–320

    Article  MATH  MathSciNet  Google Scholar 

  35. Klewicki JC, Metzger MM, Kelner E, Thurlow E (1995) Phys Fluids 7:857–863

    Article  Google Scholar 

  36. DeGraaf DB, Eaton JK (2000) J Fluid Mech 422:319–346

    Article  Google Scholar 

  37. Jiménez J, Moser RD (2000) AIAA J 38:605–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Jiménez, J. (2008). Some Contributions and Challenges of Computational Turbulence Research. In: Kaneda, Y. (eds) IUTAM Symposium on Computational Physics and New Perspectives in Turbulence. IUTAM Bookseries, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6472-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6472-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6471-5

  • Online ISBN: 978-1-4020-6472-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics