Skip to main content

Mechanisms of Supramolecular Assembly Exemplified by Microtubules and Amyloid Fibril Formation

  • Chapter
Book cover Supramolecular Structure and Function 9
  • 564 Accesses

The recent dramatic progress in the application of diffraction and spectroscopic techniques of structural biology has provided high resolution structural information on many individual proteins and their complexes. In cases where such proteins form biological polymers, this information provides a firm basis for consideration of structural factors affecting supramolecular assembly. However information from additional sources and techniques is frequently necessary in defining the mechanisms of the assembly process. In this article, structural and kinetic evidence on the assembly of microtubules and the formation of amyloid fibrils is presented, and compared as examples of two biophysical processes with contrasting biological roles with respect to cellular health and survival.

Keywords: amyloids, dynamic instability, oligomers, prion protein, protofilaments, tubulin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguzzi, A. (2004) Understanding the diversity of prions. Nat. Cell. Biol. 6: 290-2.

    Article  Google Scholar 

  • Apetri, A.C., Vanik, D.L. and Surewicz, W.K. (2005) Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90-231. Biochemistry 44: 15880-8.

    Article  Google Scholar 

  • Ban, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. (2003) Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278: 16462-5.

    Article  Google Scholar 

  • Ban, T., Hoshino, M., Takahashi, S., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. (2004) Direct observation of abeta amyloid fibril growth and inhibition. J. Mol. Biol. 344: 757-67.

    Article  Google Scholar 

  • Baskakov, I.V. and Bocharova, O.V. (2005) In vitro conversion of Mammalian prion protein into amyloid fibrils displays unusual features. Biochemistry 44: 2339-48.

    Article  Google Scholar 

  • Bocharova, O.V., Breydo, L., Parfenov, A.S., Salnikov, V.V. and Baskakov, I.V. (2005) In vitro Conversion of Full-length Mammalian Prion Protein Produces Amyloid Form with Physical Properties of PrP(Sc). J. Mol. Biol. 346: 645-59.

    Article  Google Scholar 

  • Boshuizen, R.S., Langeveld, J.P., Salmona, M., Williams, A., Meloen, R.H. and Langedijk, J.P. (2004) An in vitro screening assay based on synthetic prion protein peptides for identification of fibril-interfering compounds. Anal. Biochem. 333: 372-80.

    Article  Google Scholar 

  • Breydo, L., Bocharova, O.V. and Baskakov, I.V. (2005) Semiautomated cell-free conversion of prion protein: Applications for high-throughput screening of potential antiprion drugs. Anal. Biochem. 339: 165-73.

    Article  Google Scholar 

  • Buey, R.M., Barasoain, I., Jackson, E., Meyer, A., Giannakakou, P., Paterson, I., Mooberry, S., Andreu, J.M. and Diaz, J.F. (2005) Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem. Biol. 12: 1269-79.

    Article  Google Scholar 

  • Calzolai, L. and Zahn, R. (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J. Biol. Chem. 278: 35592-6.

    Article  Google Scholar 

  • Carvalho, P., Tirnauer, J.S. and Pellman, D. (2003) Surfing on microtubule ends. Trends Cell Biol. 13: 229-37.

    Article  Google Scholar 

  • Cashman, N.R. and Caughey, B. (2004) Prion diseases - close to effective therapy? Nat. Rev. Drug Discov. 3: 874-84.

    Article  Google Scholar 

  • Caughey, B. and Baron, G.S. (2006) Prions and their partners in crime. Nature 443: 803-10.

    Article  ADS  Google Scholar 

  • Caughey, B., Caughey, W.S., Kocisko, D.A., Lee, K.S., Silveira, J.R. and Morrey, J.D. (2006) Prions and transmissible spongiform encephalopathy (TSE) chemotherapeutics: A common mechanism for anti-TSE compounds? Acc. Chem. Res. 39: 646-53.

    Article  Google Scholar 

  • Chen, Y.D. and Hill, T.L. (1985) Monte Carlo study of the GTP cap in a five-start helix model of a microtubule. Proc. Natl. Acad. Sci. USA 82: 1131-5.

    Article  ADS  Google Scholar 

  • Cunningham, C., Deacon, R., Wells, H., Boche, D., Waters, S., Diniz, C. P., Scott, H., Rawlins, J.N. and Perry, V.H. (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur. J. Neurosci. 17: 2147-55.

    Article  Google Scholar 

  • Dimcheff, D.E., Portis, J.L. and Caughey, B. (2003) Prion proteins meet protein quality control. Trends Cell Biol. 13: 337-40.

    Article  Google Scholar 

  • Dobson, C.M. (2001) The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356: 133-45.

    Article  Google Scholar 

  • Ferguson, N., Becker, J., Tidow, H., Tremmel, S., Sharpe, T.D., Krause, G., Flinders, J., Petrovich, M., Berriman, J., Oschkinat, H. et al. (2006) General structural motifs of amyloid protofilaments. Proc. Natl. Acad. Sci. USA 103: 16248-53.

    Article  ADS  Google Scholar 

  • Goldsbury, C., Frey, P., Olivieri, V., Aebi, U. and Muller, S.A. (2005) Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J. Mol. Biol. 352: 282-98.

    Article  Google Scholar 

  • Govaerts, C., Wille, H., Prusiner, S.B. and Cohen, F.E. (2004) Evidence for assembly of prions with left-handed beta-helices into trimers. Proc. Natl. Acad. Sci. USA 101: 8342-7.

    Article  ADS  Google Scholar 

  • Griffith, J.S. (1967) Self-replication and scrapie. Nature 215: 1043-4.

    Article  ADS  Google Scholar 

  • Haire, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G. and Bayley, P.M. (2004) The crystal structure of the globular domain of sheep prion protein. J. Mol. Biol. 336: 1175-83.

    Article  Google Scholar 

  • Ionescu-Zanetti, C., Khurana, R., Gillespie, J.R., Petrick, J.S., Trabachino, L.C., Minert, L.J., Carter, S.A. and Fink, A.L. (1999) Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc. Natl. Acad. Sci. USA 96: 13175-9.

    Article  ADS  Google Scholar 

  • Jamin, N., Coic, Y.M., Landon, C., Ovtracht, L., Baleux, F., Neumann, J.M. and Sanson, A. (2002) Most of the structural elements of the globular domain of murine prion protein form fibrils with predominant beta-sheet structure. FEBS Lett. 529: 256-60.

    Article  Google Scholar 

  • Janosi, I.M., Chretien, D. and Flyvbjerg, H. (2002) Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys. J. 83: 1317-30.

    Article  ADS  Google Scholar 

  • Kelly, J.W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6: 11-7.

    Article  Google Scholar 

  • Kirschner, M. and Mitchison, T. (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45: 329-42.

    Article  Google Scholar 

  • Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K. and Yee, V.C. (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8: 770-4.

    Article  Google Scholar 

  • Legname, G., Nguyen, H.O., Baskakov, I.V., Cohen, F.E., Dearmond, S.J. and Prusiner, S.B. (2005) Strain-specified characteristics of mouse synthetic prions. Proc. Natl. Acad. Sci. USA.

    Google Scholar 

  • Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D. and Riek, R. (2005) 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. USA 102: 17342-7.

    Article  ADS  Google Scholar 

  • Ma, J., Wollmann, R. and Lindquist, S. (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298: 1781-5.

    Article  ADS  Google Scholar 

  • Makin, O.S., Atkins, E., Sikorski, P., Johansson, J. and Serpell, L.C. (2005) Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA 102: 315-20.

    Article  ADS  Google Scholar 

  • Makin, O.S. and Serpell, L.C. (2005) Structures for amyloid fibrils. FEBS J. 272: 5950-61.

    Article  Google Scholar 

  • Martin, S.R., Schilstra, M.J. and Bayley, P.M. (1993) Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Biophys. J. 65: 578-96.

    Article  ADS  Google Scholar 

  • McKinley, M.P., Meyer, R.K., Kenaga, L., Rahbar, F., Cotter, R., Serban, A. and Prusiner, S.B. (1991) Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J. Virol. 65: 1340-51.

    Google Scholar 

  • Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312: 237-42.

    Article  ADS  Google Scholar 

  • Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R. and Eisenberg, D. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 773-8.

    Article  ADS  Google Scholar 

  • Nogales, E. and Wang, H.W. (2006a) Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16: 221-9.

    Article  Google Scholar 

  • Nogales, E. and Wang, H.W. (2006b) Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell. Biol. 18: 179-84.

    Article  Google Scholar 

  • Nunziante, M., Gilch, S. and Schatzl, H.M. (2003) Prion diseases: from molecular biology to intervention strategies. Chembiochem. 4: 1268-84.

    Article  Google Scholar 

  • Okura, Y., Miyakoshi, A., Kohyama, K., Park, I.K., Staufenbiel, M. and Matsumoto, Y. (2006) Nonviral A{beta} DNA vaccine therapy against Alzheimer’s disease: Long-term effects and safety. Proc. Natl. Acad. Sci. USA. 103: 9619-24.

    Article  ADS  Google Scholar 

  • Oosawa, F. and Asakura, S. (1975) Thermodynamics of the polymerization of proteins. Academic Press, London.

    Google Scholar 

  • Petkova, A.T., Buntkowsky, G., Dyda, F., Leapman, R.D., Yau, W.M. and Tycko, R. (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J. Mol. Biol. 335: 247-60.

    Article  Google Scholar 

  • Petkova, A.T., Yau, W.M. and Tycko, R. (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45: 498-512.

    Article  Google Scholar 

  • Prusiner, S.B. (1993) Transgenetic investigations of prion diseases of humans and animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 339: 239-54.

    Article  ADS  Google Scholar 

  • Prusiner, S.B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95: 13363-83.

    Article  ADS  Google Scholar 

  • Rezaei, H., Eghiaian, F., Perez, J., Doublet, B., Choiset, Y., Haertle, T. and Grosclaude, J. (2005) Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. J. Mol. Biol. 347: 665-79.

    Article  Google Scholar 

  • Serpell, L.C., Blake, C.C. and Fraser, P.E. (2000a) Molecular structure of a fibrillar Alzheimer’s A beta fragment. Biochemistry 39: 13269-75.

    Article  Google Scholar 

  • Serpell, L.C., Sunde, M., Benson, M.D., Tennent, G.A., Pepys, M.B. and Fraser, P.E. (2000b) The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300: 1033-9.

    Article  Google Scholar 

  • Silveira, J.R., Raymond, G.J., Hughson, A.G., Race, R.E., Sim, V.L., Hayes, S.F. and Caughey, B. (2005) The most infectious prion protein particles. Nature 437: 257-61.

    Article  ADS  Google Scholar 

  • Souillac, P.O., Uversky, V.N. and Fink, A.L. (2003) Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry 42: 8094-104.

    Article  Google Scholar 

  • Stolz, M., Stoffler, D., Aebi, U. and Goldsbury, C. (2000) Monitoring biomolecular interactions by time-lapse atomic force microscopy. J. Struct. Biol. 131: 171-80.

    Article  Google Scholar 

  • Supattapone, S., Bosque, P., Muramoto, T., Wille, H., Aagaard, C., Peretz, D., Nguyen, H.O., Heinrich, C., Torchia, M., Safar, J. et al. (1999) Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell 96: 869-78.

    Article  Google Scholar 

  • Tanaka, M., Collins, S.R., Toyama, B.H. and Weissman, J.S. (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442: 585-9.

    Article  ADS  Google Scholar 

  • Tattum, M.H., Cohen-Krausz, S., Khalili-Shirazi, A., Jackson, G.S., Orlova, E.V., Collinge, J., Clarke, A.R. and Saibil, H.R. (2006) Elongated oligomers assemble into mammalian PrP amyloid fibrils. J. Mol. Biol. 357: 975-85.

    Article  Google Scholar 

  • Tuite, M.F. and Cox, B.S. (2006) The [PSI+] prion of yeast: a problem of inheritance. Methods 39: 9-22.

    Article  Google Scholar 

  • Watzlawik, J., Skora, L., Frense, D., Griesinger, C., Zweckstetter, M., Schulz-Schaeffer, W.J. and Kramer, M.L. (2006) Prion protein Helix1 promotes aggregation but is not converted into beta-sheet. J. Biol. Chem. 281: 30242-50.

    Article  Google Scholar 

  • Weissmann, C. (1999) Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274: 3-6.

    Article  Google Scholar 

  • Weissmann, C. (2005) Birth of a prion: spontaneous generation revisited. Cell 122: 165-8.

    Article  Google Scholar 

  • Welker, E., Raymond, L.D., Scheraga, H.A. and Caughey, B. (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J. Biol. Chem. 277: 33477-81.

    Article  Google Scholar 

  • Westermark, P. (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272: 5942-9.

    Article  Google Scholar 

  • Westermark, P., Engstrom, U., Johnson, K.H., Westermark, G.T. and Betsholtz, C. (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. USA 87: 5036-40.

    Article  ADS  Google Scholar 

  • Wickner, R.B., Edskes, H.K., Ross, E.D., Pierce, M.M., Baxa, U., Brachmann, A. and Shewmaker, F. (2004) Prion genetics: new rules for a new kind of gene. Annu. Rev. Genet. 38: 681-707.

    Article  Google Scholar 

  • Wille, H., Michelitsch, M.D., Guenebaut, V., Supattapone, S., Serban, A., Cohen, F.E., Agard, D.A. and Prusiner, S.B. (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99: 3563-8.

    Article  ADS  Google Scholar 

  • Wu, X., Xiang, X. and Hammer, J.A., 3rd. (2006) Motor proteins at the microtubule plus-end. Trends Cell Biol. 16: 135-43.

    Article  Google Scholar 

  • Wuthrich, K. and Riek, R. (2001) Three-dimensional structures of prion proteins. Adv. Protein Chem. 57: 55-82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bayley, P. (2007). Mechanisms of Supramolecular Assembly Exemplified by Microtubules and Amyloid Fibril Formation. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_7

Download citation

Publish with us

Policies and ethics