Skip to main content

Some Basic Biomolecular NMR for Protein Structure Determination

  • Chapter
Supramolecular Structure and Function 9
  • 557 Accesses

Atomic structures are critical for understanding biological processes at the molecular level. NMR has become has become the most effective and reliable methodology for three-dimensional structure determination of biological macromolecules in solution. The present overview describes the basic methodology. NMR structures depend primarily on Nuclear Overhauser Effect derived distance restraints between protons close in space (<6 Å), supplemented by 3J scalar couplings that report on local dihedral angles. Large systems can be investigated using uniformly 13C/15N/2H labeled molecules and sequential assignment strategies based solely on heteronuclear through-bond correlations have become the norm. In addition, a number of recent advances, such as using Residual Dipolar Couplings for refinement and relative positioning of domains are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bax, A. and Grzesiek, S. (1993) Methodological Advances in Protein NMR. Acc. of Chem. Res. 26: 131-138.

    Article  Google Scholar 

  • Bax, A., Vuister, G.W., Grzesiek, S., Delaglio, F., Wang, A.C., Tschudin, R., Zhu, G. (1994) Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239: 79-105.

    Google Scholar 

  • Bax, A., Kontaxis, G. and Tjandra, N. (2001). Dipolar couplings in macromolecular structure determination. Methods Enzymol. 339: 127-174.

    Article  Google Scholar 

  • Braun, W. (1987) Distance geometry and related methods for protein structure determination from NMR data. Q Rev Biophys, 19: 115-157.

    Article  Google Scholar 

  • Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54: 905-921.

    Article  Google Scholar 

  • Chou, J.J. and Bax, A. (2001) Protein side-chain rotamers from dipolar couplings in a liquid crystalline phase. J. Am. Chem. Soc. 123: 3844-3845.

    Article  Google Scholar 

  • Clore G.M. and Gronenborn, A.M. (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24(5): 479-564.

    Article  Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1991a) Structures of larger proteins in solution: Threeand four-dimensional heteronuclear NMR spectroscopy. Science 252: 1390.

    Article  ADS  Google Scholar 

  • Clore G.M. and Gronenborn A.M. (1991) Applications of three- and four dimensional heteronuclear NMR spectroscopy to protein structure determination. Prog. NMR Spectrosc. 23: 43-92.

    Article  Google Scholar 

  • deAlba, E. and Tjandra, N. (2004) Residual dipolar couplings in protein structure determination. Methods Mol. Biol. 278: 89-106.

    Google Scholar 

  • Ding, K. and Gronenborn, A.M. (2004) Protein backbone 1H(N)-13Calpha and 15N-13Calpha residual dipolar and J couplings: New constraints for NMR structure determination. J. Am. Chem. Soc. 126: 6232-6233.

    Article  Google Scholar 

  • Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389-1401.

    Article  Google Scholar 

  • Gronenborn, A.M. (2002) The importance of being ordered: improving NMR structures using residual dipolar couplings. C. R. Biol. 325: 957-966.

    Article  Google Scholar 

  • Gűntert, P., Mumenthaler, C. and Wuthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273: 283-298.

    Article  Google Scholar 

  • Havel, T.F. and Wűthrich, K. (1985) An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J. Mol. Biol. 182: 281-294.

    Article  Google Scholar 

  • Herrmann, T., Guntert, P. and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24: 171-189.

    Article  Google Scholar 

  • Linge, J.P., O’Donoghue, S.I. and Nilges, M. (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol. 339: 71-90.

    Article  Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229: 317-324.

    Article  Google Scholar 

  • Ottiger, M. and Bax, A. (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. J. Biomol. NMR 13: 187-191.

    Article  Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94: 12366-12371.

    Article  ADS  Google Scholar 

  • Prestegard, J.H. (1998) New techniques in structural NMR-anisotropic interactions. Nat. Struct. Biol. 5: 517-522.

    Article  Google Scholar 

  • Prestegard, J.H., Bougault, C.M. and Kishore, A.I. (2004) Residual dipolar couplings in structure determination of biomolecules. Chem. Rev. 104: 3519-3540.

    Article  Google Scholar 

  • Rieping, W., Habeck, M. and Nilges, M. (2005) Inferential structure determination. Science 309: 303-306.

    Article  ADS  Google Scholar 

  • Schwieters, C.D., Kuszewski, J., Tjandra, N. and Clore, G.M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160: 66-74.

    Article  ADS  Google Scholar 

  • Tjandra, N., Grzesiek, S., and Bax, A. (1996). Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Amer. Chem. Soc. 118, 6264-6272.

    Article  Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278: 1697.

    Article  Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997a) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat. Struct. Biol. 4: 443-449.

    Article  Google Scholar 

  • Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997b). Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4: 732-738.

    Article  Google Scholar 

  • Tolman, J.R., and Prestegard, J. H. (1996). A quantitative J-correlation experiment for the accurate measurement of one-bond amide 15N-1H couplings in proteins. J. Magn. Reson. Series B 112, 245-252.

    Article  Google Scholar 

  • Tugarinov, V., Hwang, P.M. and Kay, L.E. (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Ann. Rev. Biochem. 73: 107-146.

    Article  Google Scholar 

  • Wüthrich, K. (1986) NMR of proteins and nucleic acids. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gronenborn, A.M. (2007). Some Basic Biomolecular NMR for Protein Structure Determination. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_3

Download citation

Publish with us

Policies and ethics