Skip to main content

Novel Leads for Selective Antibiotics Against Shigellosis by Virtual Screening, Crystallography and Synthesis

  • Chapter

Eubacterial tRNA-guanine transglycosylase (TGT) is involved in the hypermodification of cognate tRNAs leading to an exchange of guanine 34 at the wobble position in the anticodon loop by preQ 1, as part of the biosynthesis of queuine. Mutation of the tgt-gene in Shigella flexneri results in a significant loss of pathogenicity of the bacterium, revealing TGT as a prospective target for the design of potent drugs against Shigellosis. The X-ray structure of Zymomonas mobilis TGT in complex with preQ 1 was used to search for putative inhibitors, initially with the computer program LUDI. Furthermore, the recognition properties of the protein binding site have been used to derive a protein-based pharmacophore which served as a prerequisite for virtual screening based on molecular similarity and docking. This strategy retrieved several novel scaffolds potentially matching with the substrate recognition site. Iterative design has been applied to reveal significantly larger inhibitors with improved binding properties addressing further polar residues in the binding pocket and filling specifically a small hydrophobic cavity. The protein performs several conformational adaptations upon ligand binding which are in agreement with the required substrate promiscuity of the enzyme. Water molecules accommodated in the binding pocket have been detected as important either for mediating interactions between protein and ligand or to bridge interactions between polar groups of the protein. In the latter case, replacement of these waters is detrimental to ligand binding. Addressing the U33 binding pocket reveals a substantial increase in ligand binding affinity, also due to the formation of charge-assisted hydrogen bonds.

Keywords: Shigella Dysentery, Leads Compound Discovery, Drug Discovery and Design, Protein-Ligand Interactions, Docking, Scoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A., Goldacre, R. and Phillips, J. (1948) The strength of heterocyclic bases. J. Chem. Soc, 2240-2248.

    Google Scholar 

  • Ashkenazi, S., Levy, I., Kazaronovski, V. and Samra, Z. (2003). Growing antimicrobial resistance of Shigella isolates. J. Antimicrob. Chemother. 51: 427-429.

    Article  Google Scholar 

  • Bennish, M.L. (1991) Potentially lethal complications of shigellosis. Rev. Infect. Dis. 13: S319-S324.

    Google Scholar 

  • Böhm, H. and Klebe, G. (1996) What Can We Learn From Molecular Recognition in ProteinLigand Complexes for the Design of New Drugs. Angew. Chem. Int. Ed. Engl., 35: 2588-2614.

    Article  Google Scholar 

  • Brenk, R. Virtuelles Screening, strukturbasiertes Design und Kristallstrukturanalyse von Inhibitoren der tRNA-Guanin Transglykosylase, ein Target der Bakterienruhr (PhD Thesis). Philipps-University of Marburg; 2003.

    Google Scholar 

  • Brenk, R., Naerum, L., Gradler, U., Gerber, H.D., Garcia, G.A., Reuter, K., Stubbs, M.T. and Klebe, G. (2003a) Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. J. Med. Chem. 46: 1133-43. 64.

    Article  Google Scholar 

  • Brenk, R., Stubbs, M.T., Heine, A., Reuter, K and Klebe, G. (2003b) Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design. Chembiochem. 4: 1066-77.

    Article  Google Scholar 

  • Brenk, R., Kittendorf, J.D., Garcia, G.A., Reuter, K. and Klebe, G. (2003c) From Hit to Lead: De Novo Design Based on Virtual Screening Hits of Inhibitors of tRNA-Guanine Transglycosylase, a Putative Target of Shigellosis Therapy. Helv. Chim. Acta. 86: 1435-1452.

    Article  Google Scholar 

  • Brenk, R., Meyer, E.A., Reuter, K., Stubbs, M.T., Garcia, G.A., Diederich, F. and Klebe, G. (2004) Crystallographic study of inhibitors of tRNA-guanine transglycosylase suggests a new structure-based pharmacophore for virtual screening. J. Mol. Biol. 338: 55-75.

    Article  Google Scholar 

  • Brown, H.C. (1955) In: Braude, E.A., Nachod, F.C., eds. Determination of Organic Structures by Physical Methods. New York: Academic Press.

    Google Scholar 

  • Bruice, T.C. and Schmir, G.L. (1958) Imidazole Catalysis. II. The Reaction of Substituted Imidazoles with Phenyl Acetates in Aqueous Solution J. Am. Chem. Soc. 80: 148.

    Article  Google Scholar 

  • Björk, G. (1996) Stable RNA modification. In: Neidhardt, F.C., Curtiss I.R., Ingraham, J.L., Lin, C.C.C., Low, J.K.B., Magasanik, Bea, eds. Escherichia coli and Salmonella: Cellular and Molecular Biology. 2 ed. Washington, DC: American Society for Microbiology Press, 861-886.

    Google Scholar 

  • Cohen, D., Green, M., Block, C., Slepon, R., Ambar, R., Wassermann, S.S. and Levine, M.M. (1991) Reduction of transmission of shigellosis by control of houseflies (Musca domestica). Lancet. 337: 993-997.

    Article  Google Scholar 

  • Dorman, C.J. and Porter, M.E. (1998) The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Molecular Microbiology. 29: 677-684.

    Article  Google Scholar 

  • Durand, J.M., Okada, N., Tobe, T., Watarai, M., Fukuda, I., Suzuki, T., Nakata, N., Komatsu, K., Yoshikawa, M. and Sasakawa, C. (1994) vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J. Bacteriol. 176: 4627-4634.

    Google Scholar 

  • Durand, J.M., Björk, G.R., Kuwae, A., Yoshikawa, M. and Sasakawa, C. (1997) The modified nucleoside 2-methylthio-N6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J. Bacteriol. 179: 5777-5782.

    Google Scholar 

  • Durand, J.M., Dagberg, B., Uhlin, B.E. and Bjork, G.R. (2000) Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Mol. Microbiol. 35: 924-935.

    Article  Google Scholar 

  • Durand, J.M. and Björk, G.R. (2003) Putrescine or a combination of methionine and arginine restores virulence gene expression in a tRNA modification-deficient mutant of Shigella flexneri: a possible role in adaptation of virulence. Mol. Microbiol. 47: 519-527.

    Article  Google Scholar 

  • Escobar-Páramo, P., Clermont, O., Blanc-Potard, A.B., Bui, H., Le Bouguénec, C. and Denamur, E. (2004) A Specific Genetic Background Is Required for Acquisition and Expression of Virulence Factors in Escherichia coli. Molecular Biology and Evolution. 21: 1085-1094

    Article  Google Scholar 

  • Fernandez, M.I. and Sansonetti, P.J. (2003). Shigella interaction with intestinal epithelial cells determines the innate immune response in shigellosis. Int. J. Med. Microbiol. 293: 55-67.

    Article  Google Scholar 

  • Goodenough-Lashua, D.M. and Garcia, G.A. (2003) RNA-guanine transglycosylase from E. coli: a ping-pong kinetic mechanism is consistent with nucleophilic catalysis. Bioorg. Chem. 31: 331-44.

    Article  Google Scholar 

  • Grädler, U., Gerber, H.D., Goodenough-Lashua, D.M., Garcia, G.A., Ficner, R., Reuter, K., Stubbs, M.T. and Klebe, G. (2001) A New Target for Shigellosis: Rational Design and Crystallographic Studies of Inhibitors of tRNA-guanine Transglycosylase. J. Mol. Biol. 306: 455-467.

    Article  Google Scholar 

  • Goma Epidemiology Group. (1995) Public health impact of Rwandan refugee crisis: what happened in Goma, Zaire, in July, 1994? Lancet. 345: 339-344.

    Article  Google Scholar 

  • Heikkila, E. (1990) Increase of trimethoprim resistance among Shigella species, 1975-1988: analysis of resistance mechanism. J. of Infectious Diseases. 161: 1242-1248.

    Google Scholar 

  • Howard, E.I., Sanishvili, R., Cachau, R.E., Mitschler, A., Chevrier, B., Barth, P., Lamour, V., Van Zandt, M., Moras, D., Schneider, T.R., Joachimiak, A. and Podjarny, A. (2004) Ultrahigh Resolution Drug Design I: Details of Interactions in Human Aldose ReductaseInhibitor Complex at 0.66 Å. Proteins: Structure, Function and Bioinformatics. 55: 792-804.

    Article  Google Scholar 

  • Jennison, A.V. and Verma, N.K. (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiology Reviews. 28: 43-58.

    Article  Google Scholar 

  • Kotloff, K., Winickoff, J., Ivanoff, B., Clemens, J., Swerdlow, D., Sansonetti, P., Adak, G. and Levine, M. (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bulletin of the World Health Organization (WHO Bull.). 77: 651-666.

    Google Scholar 

  • Mathan, M.M. and Mathan, V.I. (1991) Morphology of rectal mucosa of patients with shigellosis. Rev. Infect. Dis. 13: S314-S318.

    Google Scholar 

  • Meyer, E.A., Brenk, R., Castellano, R.K., Furler, M., Klebe, G. and Diederich, F. (2002) De Novo Design, Synthesis, and In Vitro Evaluation of Inhibitors for Prokaryotic tRNAGuanine Transglycosylase: A Dramatic Sulfur Effect on Binding Affinity. Chembiochem. 3: 250-253.

    Article  Google Scholar 

  • Meyer, E.A., Furler, M., Diederich, F., Brenk, R. and Klebe, G. (2004) Synthesis and In Vitro Evaluation of 2-Aminoquinazolin-4(3H)-one-Based Inhibitors for tRNA-Guanine Transglycosylase (TGT). Helv. Chim. Acta. 87: 1333-1356.

    Article  Google Scholar 

  • Meyer, E.A., Donati, N., Guillot, M., Schweizer, W.B., Diederich, F., Stengl, B., Brenk, R., Reuter, K. and Klebe, G. (2006) Synthesis, Biological Evaluation, and Crystallographic Studies of Extended Guanine based (lin-Benzoguanine) Inhibitors for tRNAGuanine Transglycosylase (TGT). Helv. Chim. Acta. 89: 573-597.

    Article  Google Scholar 

  • Okada, N. and Nishimura, S. (1979) Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase, from Escherichia coli. J. Biol. Chem. 254: 3061-3066.

    Google Scholar 

  • Rauh, D., Reyda, S., Klebe, G. and Stubbs, M.T. (2002) Trypsin mutants for structure-based drug design: expression, refolding and crystallisation. J. Biol. Chem. 383: 1309-1314.

    Article  Google Scholar 

  • Rauh, D., Klebe, G., Sturzebecher, J. and Stubbs, M.T. (2003) ZZ made EZ: influence of inhibitor configuration on enzyme selectivity. J. Mol. Biol. 330: 761-770.

    Article  Google Scholar 

  • Romier, C., Reuter, K., Suck, D. and Ficner, R. (1996) Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 15: 2850-2857.

    Google Scholar 

  • Sansonetti, P.J. (2001a) Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiology Reviews. 25: 3-14.

    Google Scholar 

  • Sansonetti, P.J. (2001b) Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G319-G323.

    Google Scholar 

  • Stengl, B., Reuter, K. and Klebe, G. (2005) Mechanism and Substrate Specificity of tRNAGuanine Transglycosylases (TGTs): tRNA Modifying Enzymes from the Three Different Kingdoms of Life Share a Common Catalytic Mechanism. Chembiochem. 6: 1-15.

    Article  Google Scholar 

  • Sotriffer, C., Krämer, O. and Klebe, G. (2004) Probing flexibility and ‘induced-fit’ phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations Proteins: Structure, Function and Genetics. 56: 52-66.

    Article  Google Scholar 

  • Urzhumtsev, A., Tete-Favier, F., Mitschler, A., Barbanton, J., Barth, P., Urzhumtseva, L., Biellmann, J.F., Podjarny, A. and Moras, D. (1997) A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure. 5: 601-612.

    Article  Google Scholar 

  • Van Nhieu, G.T., Bourdet-Sicard, R., Duménil, G., Blocker, A. and Sansonetti, P.J. (2000) Bacterial signals and cell responses during Shigella entry into epithelial cells. Cellular Microbiology. 2: 187-193.

    Article  Google Scholar 

  • Xie, W., Liu, X. and Huang, R.H. (2003) Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol. 10: 781-788.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Stengl, B., Klebe, G. (2007). Novel Leads for Selective Antibiotics Against Shigellosis by Virtual Screening, Crystallography and Synthesis. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6466-1_11

Download citation

Publish with us

Policies and ethics