Functional EPR Spectroscopy and Imaging of Nitroxides

  • Valery V. Khramtsov

Absorption and fluorescent probes are particularly effective for studies at the cellular and subcellular levels, while magnetic resonance spectroscopy has the advantage of in vivo applications in animals and humans. Over the past decade, despite formidable technical problems, significant progress has been made regarding in vivo EPR techniques that have much higher sensitivity than NMR for the same probe concentration. However the potential of the EPR-based techniques is still far from being maximally defined, predominantly because of the requirement for exogenous spin probes. Among paramagnetic probes, the nitroxides, stable organic free radicals, provide a wide range of available structures variable in solubility and tissue redistribution, spectral and functional sensitivity, ability to be targeted and their lifetimes in living tissues. Particularly an ability to follow by EPR specific chemical reactivity of the nitroxides towards biologically relevant compounds provides unique functionality to in vivo EPR spectroscopy and imaging. In this contribution we reviewed applications of EPR spectroscopy and imaging of the nitroxides for the probing local chemical environment, including oxygen, redox state, thiols, pH, and nitric oxide, with particular emphasis on in vivo applications.

Keywords EPR spectroscopy, nitroxides, EPR oximetry, spin pH probes, in vivo EPR, thiol-specific spin labels, glutathione, redox state, EPR imaging, PEDRI (Proton-Electron Double Resonance Imaging)


Electron Paramagnetic Resonance Spin Label Spin Probe Paramagnetic Probe Nitronyl Nitroxides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, T., Yoshida, M., Miyamoto, Y., Sato, K., Kohno, M., Sasamoto, K., Miyazaki, K., Ueda, S. and Maeda, H. (1993) Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/NO through a radical reaction. Biochemistry 32(3): 827-32.CrossRefGoogle Scholar
  2. Albanese, R.A. (1973) On microelectrode distortion of tissue oxygen tensions. J. Theor. Biol. 38(1): 143-54.CrossRefGoogle Scholar
  3. Alonso, A., dos Santos, W.P., Leonor, S.J., dos Santos, J.G. and Tabak, M. (2001) Stratum corneum protein dynamics as evaluated by a spin-label maleimide derivative: effect of urea. Biophys. J. 81(6): 3566-76.CrossRefGoogle Scholar
  4. Altenbach, C., Flitsch, S.L., Khorana, H.G. and Hubbell, W.L. (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28(19): 7806-12.CrossRefGoogle Scholar
  5. Andersson, S., Radner, F., Rydbeek, A., Servin, R. and Wistrand, L.-G. (1996) Free radicals, Nycomed Imaging AS. U.S. Patent 5, 530, 140.Google Scholar
  6. Ardenkjaer-Larsen, J.H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L.G., Petersson, J.S. and Golman, K. (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J. Magn. Reson. 133(1): 1-12.ADSCrossRefGoogle Scholar
  7. Bacic, G., Nilges, M.J., Magin, R.L., Walczak, T. and Swartz, H.M. (1989) In vivo localized ESR spectroscopy reflecting metabolism. Magn. Reson. Med. 10(2): 266-72.CrossRefGoogle Scholar
  8. Backer, J.M., Budker, V.G., Eremenko, S.I. and Molin, Y.N. (1977) Detection of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals. Biochim. Biophys. Acta 460(1): 152-6.CrossRefGoogle Scholar
  9. Baker, J.E., Froncisz, W., Joseph, J. and Kalyanaraman, B. (1997) Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic. Biol. Med. 22(1-2): 109-15.CrossRefGoogle Scholar
  10. Balcerczyk, A. and Bartosz, G. (2003) Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radic. Res. 37(5): 537-41.CrossRefGoogle Scholar
  11. Balcerczyk, A., Grzelak, A., Janaszewska, A., Jakubowski, W., Koziol, S., Marszalek, M., Rychlik, B., Soszynski, M., Bilinski, T. and Bartosz, G. (2003) Thiols as major determinants of the total antioxidant capacity. Biofactors 17(1-4): 75-82.CrossRefGoogle Scholar
  12. Balthasar, W. (1971) Spin labeling studies of D-glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem. 22(2): 158-65.CrossRefGoogle Scholar
  13. Berliner, L.J., Grunwald, J., Hankovszky, H.O. and Hideg, K. (1982) A novel reversible thiolspecific spin label: papain active site labeling and inhibition. Anal. Biochem. 119(2): 450-5.CrossRefGoogle Scholar
  14. Berliner, L.J., Khramtsov, V., Fujii, H. and Clanton, T.L. (2001) Unique in vivo applications of spin traps. Free Radic. Biol. Med. 30(5): 489-99.CrossRefGoogle Scholar
  15. Blasig, I.E., Mertsch, K. and Haseloff, R.F. (2002) Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier. Neuropharmacology 43(6): 1006-14.CrossRefGoogle Scholar
  16. Bobko, A.A., Bagryanskaya, E.G., Reznikov, V.A., Kolosova, N.G., Clanton, T.L. and Khramtsov, V.V. (2004) Redox-sensitive mechanism of no scavenging by nitronyl nitroxides. Free Radic. Biol. Med. 36(2): 248-58.CrossRefGoogle Scholar
  17. Bobko, A.A., Kirilyuk, I.A., Grigor’ev, I.A., Zweier, J.L. and Khramtsov, V.V. (2007) Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione. Free Rad. Biol. Med. 42(3).Google Scholar
  18. Bobko, A.A., Sergeeva, S.V., Bagryanskaya, E.G., Markel, A.L., Khramtsov, V.V., Reznikov, V.A. and Kolosova, N.G. (2005) NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem. Biophys. Res. Commun. 330(2): 367-70.CrossRefGoogle Scholar
  19. Bratasz, A., Khramtsov, V.V. and Kuppusamy, P. (2003) A modified Tietze assay for the determination of thiols in intact cells and tissues. Free Radic. Biol. Med. 35 (Suppl. 1): S147.Google Scholar
  20. Bratasz, A., Weir, N.M., Parinandi, N.L., Zweier, J.L., Sridhar, R., Ignarro, L.J. and Kuppusamy, P. (2006) Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc. Natl. Acad. Sci. USA 103(10): 3914-9.ADSCrossRefGoogle Scholar
  21. Breit, G. and Rabi, I.I. (1931) Measurement of nuclear spin. Phys. Rev. 38: 2082-2083.ADSCrossRefGoogle Scholar
  22. Cao, B.J. and Reith, M.E. (2002) Nitric oxide scavenger carboxy-PTIO potentiates the inhibition of dopamine uptake by nitric oxide donors. Eur. J. Pharmacol. 448(1): 27-30.CrossRefGoogle Scholar
  23. Chan, H.C., Glockner, J.F. and Swartz, H.M. (1989) Oximetry in cells and tissues using a nitroxide-liposome system. Biochim. Biophys. Acta 1014(2): 141-4.CrossRefGoogle Scholar
  24. Clarkson, R.B., Odintsov, B.M., Ceroke, P.J., Ardenkjaer-Larsen, J.H., Fruianu, M. and Belford, R.L. (1998) Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry. Phys. Med. Biol. 43(7): 1907-20.CrossRefGoogle Scholar
  25. Edelstein, N., Kwok, A. and Maki, A.H. (1964) Effects of hydrostatic pressure on linewidths of free radical in solutions. I. Anisotropic region. J. Chem. Phys. 41: 179-183.ADSCrossRefGoogle Scholar
  26. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1): 70-7.CrossRefGoogle Scholar
  27. Finkelstein, E., Rosen, G.M. and Rauckman, E.J. (1984) Superoxide-dependent reduction of nitroxides by thiols. Biochim. Biophys. Acta 802: 90-98.Google Scholar
  28. Foster, M.A., Grigor’ev, I.A., Lurie, D.J., Khramtsov, V.V., McCallum, S., Panagiotelis, I., Hutchison, J.M., Koptioug, A. and Nicholson, I. (2003) In vivo detection of a pHsensitive nitroxide in the rat stomach by low-field ESR-based techniques. Magn. Reson. Med. 49(3): 558-67.CrossRefGoogle Scholar
  29. Froncisz, W., Lai, C.S. and Hyde, J.S. (1985) Spin-label oximetry: kinetic study of cell respiration using a rapid-passage T1-sensitive electron spin resonance display. Proc. Natl. Acad. Sci. USA 82(2): 411-5.ADSCrossRefGoogle Scholar
  30. Gabbita, S.P., Subramaniam, R., Allouch, F., Carney, J.M. and Butterfield, D.A. (1998) Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation. Biochim. Biophys. Acta 1372(2): 163-73.CrossRefGoogle Scholar
  31. Gallez, B., Bacic, G., Goda, F., Jiang, J., O’Hara, J.A., Dunn, J.F. and Swartz, H.M. (1996a) Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues: in vivo EPR and MRI studies. Magn. Reson. Med. 35(1): 97-106.CrossRefGoogle Scholar
  32. Gallez, B., Debuyst, R., Demeure, R., Dejehet, F., Grandin, C., Van Beers, B., Taper, H., Pringot, J. and Dumont, P. (1993) Evaluation of a nitroxyl fatty acid as liver contrast agent for magnetic resonance imaging. Magn. Reson. Med. 30(5): 592-9.CrossRefGoogle Scholar
  33. Gallez, B., Mader, K. and Swartz, H.M. (1996b) Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study. Magn. Reson. Med. 36 (5): 694-7.CrossRefGoogle Scholar
  34. Glebska, J., Skolimowski, J., Kudzin, Z., Gwozdzinski, K., Grzelak, A. and Bartosz, G. (2003). Pro-oxidative activity of nitroxides in their reactions with glutathione. Free Radic. Biol. Med. 35(3): 310-6.CrossRefGoogle Scholar
  35. Glockner, J.F., Chan, H.C. and Swartz, H.M. (1991) In vivo oximetry using a nitroxideliposome system. Magn. Reson. Med. 20(1): 123-33.CrossRefGoogle Scholar
  36. Glockner, J.F., Norby, S.W. and Swartz, H.M. (1993) Simultaneous measurement of intracellular and extracellular oxygen concentrations using a nitroxide-liposome system. Magn. Reson. Med. 29(1): 12-8.CrossRefGoogle Scholar
  37. Gnaiger, E. (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir. Physiol. 128(3): 277-97.CrossRefGoogle Scholar
  38. Griffith, O.H. and McConnell, H.M. (1966) A nitroxide-maleimide spin label. Proc. Natl. Acad. Sci. USA. 55: 8-11.ADSCrossRefGoogle Scholar
  39. Guiberteau, T. and Grucker, D. (1997) Dynamic nuclear polarization imaging in very low magnetic fields as a noninvasive technique for oximetry. J. Magn. Reson. 124(1): 263-6.ADSCrossRefGoogle Scholar
  40. Halpern, H.J., Yu, C., Peric, M., Barth, E., Grdina, D.J. and Teicher, B.A. (1994) Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc. Natl. Acad. Sci. USA. 91(26): 13047-51.ADSCrossRefGoogle Scholar
  41. Haseloff, R.F., Zollner, S., Kirilyuk, I.A., Grigor’ev, I.A., Reszka, R., Bernhardt, R., Mertsch, K., Roloff, B. and Blasig, I.E. (1997) Superoxide-mediated reduction of the nitroxide group can prevent detection of nitric oxide by nitronyl nitroxides. Free Radic. Res. 26(1): 7-17.CrossRefGoogle Scholar
  42. He, G., Samouilov, A., Kuppusamy, P. and Zweier, J.L. (2002) In vivo imaging of free radicals: applications from mouse to man. Mol. Cell Biochem. 234-235(1-2): 359-67.CrossRefGoogle Scholar
  43. Hensley, K., Carney, J., Hall, N., Shaw, W. and Butterfield, D.A. (1994) Electron paramagnetic resonance investigations of free radical-induced alterations in neocortical synaptosomal membrane protein infrastructure. Free Radic. Biol. Med. 17(4): 321-31.CrossRefGoogle Scholar
  44. Herzenberg, L.A., De Rosa, S.C., Dubs, J.G., Roederer, M., Anderson, M.T., Ela, S.W., Deresinski, S.C. and Herzenberg, L.A. (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA. 94(5): 1967-72.ADSCrossRefGoogle Scholar
  45. Hideg, K., Kalai, T. and Sar, C.P. (2005) Recent results in chemistry and biology of nitroxides. J. Heterocycl. Chem. 42: 437-450.CrossRefGoogle Scholar
  46. Hubbell, W.L., Cafiso, D.S. and Altenbach, C. (2000) Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7(9): 735-9.CrossRefGoogle Scholar
  47. Hubbell, W.L., McHaourab, H.S., Altenbach, C. and Lietzow, M.A. (1996) Watching proteins move using site-directed spin labeling. Structure 4(7): 779-83.CrossRefGoogle Scholar
  48. Hyde, J.S., Jin, J.-J., Felix, J.B. and Hubbell, W.L. (1990) Advances in spin label oximetry. Pure & Applied Chem. 62: 255-260.CrossRefGoogle Scholar
  49. Hyde, J.S. and Subszynski, W.K. (1989) Spin label oximetry. In: Berliner, L.J. and Reubens, J. eds., Spin Labeling: Theory and Application. Plenum Press, New York, Vol. 8, pp. 399-425.Google Scholar
  50. Il’yasov, A.V. (1962) Solvent effects in the EPR spectra of certain free radicals. J. Struct. Chem. 3(1): 84-86.CrossRefGoogle Scholar
  51. Joseph, J., Kalyanaraman, B. and Hyde, J.S. (1993) Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192 (2): 926-34.CrossRefGoogle Scholar
  52. Khramtsov, V.V. (2005) Biological imaging and spectroscopy of pH. Curr. Org. Chem. 9: 909-923.CrossRefGoogle Scholar
  53. Khramtsov, V.V., Grigor’ev, I.A., Foster, M.A. and Lurie, D.J. (2004a) In vitro and in vivo measurement of pH and thiols by EPR-based techniques. Antioxid. Redox Signal. 6(3): 667-76.CrossRefGoogle Scholar
  54. Khramtsov, V.V., Grigor’ev, I.A., Foster, M.A., Lurie, D.J. and Nicholson, I. (2000) Biological applications of spin pH probes. Cell Mol. Biol. 46(8): 1361-74.Google Scholar
  55. Khramtsov, V.V., Grigor’ev, I A., Foster, M.A., Lurie, D.J., Zweier, J.L. and Kuppusamy, P. (2004b) Spin pH and SH probes: enhancing functionality of EPR-based techniques. Spectroscopy 18: 213-225.Google Scholar
  56. Khramtsov, V.V., Grigor’ev, I.A., Kirilyuk, I.A., Ilangovan, G. and Kuppusamy, P. (2002) In vivo EPR measurement of tissue acidosis during myocardial ischemia using pHsensitive nitroxides. Free Rad. Biol. Med. 33(Suppl. 2): S423-S424.Google Scholar
  57. Khramtsov, V.V., Panteleev, M.V. and Weiner, L.M. (1989a) ESR study of proton transport across phospholipid vesicle membranes. J. Biochem. Biophys. Methods 18(3): 237-46.CrossRefGoogle Scholar
  58. Khramtsov, V.V. and Volodarsky, L.B. (1998) Use of imidazoline nitroxides in studies of chemical reactions. ESR measurements of the concentration and reactivity of protons, thiols and nitric oxide. In: Berliner, L.J., ed., Spin labeling. The next Millennium. Plenum Press, New York, Vol. 14, p. 109-180.Google Scholar
  59. Khramtsov, V.V. and Weiner, L.M. (1988) Proton exchange in stable nitroxyl radicals: pH sensitive spin probes. In: Volodarsky, L.B., ed., Imidazoline nitroxides. CRC Press, Boca Raton, FL., Vol. 2, 37-80.Google Scholar
  60. Khramtsov, V.V., Weiner, L.M., Grigor’ev, I.A. and Volodarsky, L.B. (1982) Proton exchange in stable nitroxyl radicals. EPR studies of the pH of aqueous solutions. Chem. Phys. Lett. 91: 69-72.ADSCrossRefGoogle Scholar
  61. Khramtsov, V.V., Yelinova, V.I., Glazachev Yu, I., Reznikov, V.A. and Zimmer, G. (1997) Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label. J. Biochem. Biophys. Methods 35(2): 115-28.CrossRefGoogle Scholar
  62. Khramtsov, V.V., Yelinova, V.I., Weiner, L.M., Berezina, T.A., Martin, V.V. and Volodarsky, L.B. (1989b) Quantitative determination of SH groups in low- and highmolecular-weight compounds by an electron spin resonance method. Anal. Biochem. 182 (1): 58-63.CrossRefGoogle Scholar
  63. Kirilyuk, I.A., Bobko, A.A., Grigor’ev, I.A. and Khramtsov, V.V. (2004) Synthesis of the tetraethyl substituted pH-sensitive nitroxides of imidazole series with enhanced stability towards reduction. Org. Biomol. Chem. 2(7): 1025-30.CrossRefGoogle Scholar
  64. Kirilyuk, I.A., Bobko, A.A., Khramtsov, V.V. and Grigor’ev, I.A. (2005) Nitroxides with two pK values-useful spin probes for pH monitoring within a broad range. Org. Biomol. Chem. 3(7): 1269-74.CrossRefGoogle Scholar
  65. Kocherginsky, N. and Swartz, H.M. (1995) Nitroxide spin labels. Reactions in biology and chemistry, CRC Press, Boca Raton, FL.Google Scholar
  66. Konczol, F., Lorinczy, D. and Belagyi, J. (1998) Effect of oxygen free radicals on myosin in muscle fibres. FEBS Lett. 427(3): 341-4.CrossRefGoogle Scholar
  67. Krishna, M.C., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam, N., Cook, J. A., Golman, K., Ardenkjaer-Larsen, J. H., Subramanian, S. and Mitchell, J.B. (2002) Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc. Natl. Acad. Sci. USA 99(4): 2216-21.ADSCrossRefGoogle Scholar
  68. Kroll, C., Hermann, W., Stosser, R., Borchert, H.H. and Mader, K. (2001) Influence of drug treatment on the microacidity in rat and human skin-an in vitro electron spin resonance imaging study. Pharm. Res. 18(4): 525-30.CrossRefGoogle Scholar
  69. Kuppusamy, P., Afeworki, M., Shankar, R.A., Coffin, D., Krishna, M.C., Hahn, S.M., Mitchell, J.B. and Zweier, J.L. (1998) In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res. 58(7): 1562-8.Google Scholar
  70. Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D.J., Giannella, E. and Zweier, J.L. (1994) Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc. Natl. Acad. Sci. USA 91 (8): 3388-92.ADSCrossRefGoogle Scholar
  71. Kuppusamy, P. and Krishna, M.C. (2002) EPR Imaging of tissue redox status. Current topics in Biophysics 26: 29-34.Google Scholar
  72. Kuppusamy, P., Li, H., Ilangovan, G., Cardounel, A.J., Zweier, J.L., Yamada, K., Krishna, M. C. and Mitchell, J.B. (2002) Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 62(1): 307-12.Google Scholar
  73. Kuppusamy, P. and Zweier, J.L. (2004) Cardiac applications of EPR imaging. NMR Biomed. 17(5): 226-39.CrossRefGoogle Scholar
  74. Kveder, M., Krisko, A., Pifat, G. and Steinhoff, H.J. (2003) The study of structural accessibility of free thiol groups in human low-density lipoproteins. Biochim. Biophys. Acta 1631(3): 239-45.Google Scholar
  75. Lai, C.S., Hopwood, L.E., Hyde, J.S. and Lukiewicz, S. (1982) ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. USA 79(4): 1166-70.ADSCrossRefGoogle Scholar
  76. Lebedev, O.A. and Kayanovskii, S.N. (1959) Catalytic oxidation of aliphatic amines with hydrogen peroxide. Trudy po Khimii i Khim. Technologii (Gorkii) 8: 649-652.Google Scholar
  77. Lebedev, O.A., Khidekel, M.L. and Razuvaev, G.A. (1961) Isotopic analysis of nitrogen by electron paramagnetic resonance method. Dokladi Akademii Nauk S.S.S.R. 140: 1327-1331.Google Scholar
  78. Liu, K.J., Gast, P., Moussavi, M., Norby, S.W., Vahidi, N., Walczak, T., Wu, M. and Swartz, H.M. (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc. Natl. Acad. Sci. USA 90(12): 5438-42.ADSCrossRefGoogle Scholar
  79. Liu, K.J., Grinstaff, M.W., Jiang, J., Suslick, K.S., Swartz, H.M. and Wang, W. (1994) In vivo measurement of oxygen concentration using sonochemically synthesized microspheres. Biophys. J. 67(2): 896-901.ADSCrossRefGoogle Scholar
  80. Lurie, D.J. (2001) Free radical imaging. Br. J. Radiol. 74(885): 782-4.ADSGoogle Scholar
  81. Lurie, D.J., Li, H., Petryakov, S. and Zweier, J.L. (2002) Development of a PEDRI freeradical imager using a 0.38 T clinical MRI system. Magn. Reson. Med. 47(1): 181-6.CrossRefGoogle Scholar
  82. Lurie, D.J., Nicholson, I. and Mallard, J.R. (1991) Low-field EPR measurements by fieldcycled dynamic nuclear polarisation. J. Magn. Res. 95: 405-409.Google Scholar
  83. Mader, K., Gallez, B., Liu, K.J. and Swartz, H.M. (1996) Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 17(4): 457-61.CrossRefGoogle Scholar
  84. Mader, K., Nitschke, S., Stosser, R. and Borchert, H.H. (1997) Non-destructive and localized assessment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial electron paramagnetic resonance imaging. Polymer 38(19): 4785-4794.CrossRefGoogle Scholar
  85. Marsh, D. and Henderson, P.J. (2001) Specific spin labelling of the sugar-H(+) symporter, GalP, in cell membranes of Escherichia coli: site mobility and overall rotational diffusion of the protein. Biochim. Biophys. Acta 1510(1-2): 464-73.CrossRefGoogle Scholar
  86. Matsumoto, K., Krishna, M.C. and Mitchell, J.B. (2004) Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol. Exp. Ther. 310(3): 1076-83.CrossRefGoogle Scholar
  87. Molin, Y.N., Salikhov, K.M. and Zamaraev, K.I. (1980) In: Spin Exchange. Principles and Applications in Chemistry and Biology. Springer-Verlag, Berlin, New York, 242.Google Scholar
  88. Mordvintcev, P., Mulsch, A., Busse, R. and Vanin, A. (1991) On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal. Biochem. 199(1): 142-6.CrossRefGoogle Scholar
  89. Murugesan, R., Cook, J.A., Devasahayam, N., Afeworki, M., Subramanian, S., Tschudin, R., Larsen, J.A., Mitchell, J.B., Russo, A. and Krishna, M.C. (1997) In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy. Magn. Reson. Med. 38(3): 409-14.CrossRefGoogle Scholar
  90. Neiman, M.B., Rozatzev, E.G. and Mamedova, Y.G. (1962) Free radical reactions involving no unpaired electrons. Nature 196(3): 472-474.ADSCrossRefGoogle Scholar
  91. Nicholson, I., Robb, F.J., McCallum, S.J., Koptioug, A. and Lurie, D.J. (1998) Recent developments in combining LODESR imaging with proton NMR imaging. Phys. Med. Biol. 43(7): 1851-5.CrossRefGoogle Scholar
  92. Nohl, H., Stolze, K. and Weiner, L.M. (1995) Noninvasive measurement of thiol levels in cells and isolated organs. Methods Enzymol. 251: 191-203.CrossRefGoogle Scholar
  93. Pake, G.E. and Tuttle, T.R. (1959) Anomalous loss of resolution of paramagnetic resonance hypetfine structure in liquids. Phys. Rev. Lett. 3: 423-425.ADSCrossRefGoogle Scholar
  94. Popova, V.I., Leonova, I.N., Weiner, L.M. and Salganik, R.I. (1982) Interaction of the substrate analogue of cytochrome P-450 and mixed function oxidases. Biochem. Pharmacol. 31 (11): 1993-8.CrossRefGoogle Scholar
  95. Potapenko, D.I., Foster, M.A., Lurie, D.J., Kirilyuk, I.A., Hutchison, J.M., Grigor’ev, I.A., Bagryanskaya, E. G. and Khramtsov, V.V. (2006). Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques. J. Magn. Reson. 182(1): 1-11.ADSCrossRefGoogle Scholar
  96. Povich, M.J. (1975) Electron Spin Resonance Oxygen Broadening. J. Phys. Chem. 79: 1106-1109.CrossRefGoogle Scholar
  97. Presley, T., Kuppusamy, P., Zweier, J.L. and Ilangovan, G. (2006) Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: a consideration of oxygen diffusion interference. Biophys. J. 91(12): 4623-31.ADSCrossRefGoogle Scholar
  98. Rabenstein, M.D. and Shin, Y.K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92(18): 8239-43.ADSCrossRefGoogle Scholar
  99. Roopnarine, O., Hideg, K. and Thomas, D.D. (1993) Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics. Biophys. J. 64(6): 1896-907.ADSCrossRefGoogle Scholar
  100. Rosen, G.M., Porasuphatana, S., Tsai, P., Ambulos, N.P., Galtsev, V.E., Ichikawa, K. and Halpern, H.J. (2003) Dendrimeric-Containing Nitronyl Nitroxides as Spin Traps for Nitric Oxide: Synthesis, Kinetic, and Stability Studies. Macromolecules 36: 1021-1027.ADSCrossRefGoogle Scholar
  101. Roshchupkina, G.I., Bobko, A.A., Reznikov, V.A. and Khramtsov, V.V. (2006) Thiol-specific nitroxides for site-directed spin labeling and EPR measurement of thiol content. XXIInd International Conference on Magnetic Resonance in Biological Systems, Goettingen, Germany.Google Scholar
  102. Rossi, R., Milzani, A., Dalle-Donne, I., Giustarini, D., Lusini, L., Colombo, R. and Di Simplicio, P. (2002) Blood glutathione disulfide: in vivo factor or in vitro artifact? Clin. Chem. 48(5): 742-53.Google Scholar
  103. Samiec, P.S., Drews-Botsch, C., Flagg, E.W., Kurtz, J.C., Sternberg, P., Jr., Reed, R.L. and Jones, D.P. (1998) Glutathione in human plasma: decline in association with aging, agerelated macular degeneration, and diabetes. Free Radic. Biol. Med. 24(5): 699-704.CrossRefGoogle Scholar
  104. Sarna, T., Duleba, A., Korytowski, W. and Swartz, H. (1980) Interaction of melanin with oxygen. Arch. Biochem. Biophys. 200(1): 140-8.CrossRefGoogle Scholar
  105. Schafer, F.Q. and Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30(11): 1191-212.CrossRefGoogle Scholar
  106. Soszynski, M. and Bartosz, G. (1997) Decrease in accessible thiols as an index of oxidative damage to membrane proteins. Free Radic. Biol. Med. 23(3): 463-9.CrossRefGoogle Scholar
  107. Stone, T.J., Buckman, T., Nordio, P.L. and McConnell, H.M. (1965) Spin-labeled biomolecules. Proc. Natl. Acad. Sci. USA 54(4): 1010-7.ADSCrossRefGoogle Scholar
  108. Swartz, H.M. (2004) Using EPR to measure a critical but often unmeasured component of oxidative damage: oxygen. Antioxid. Redox Signal. 6(3): 677-86.CrossRefGoogle Scholar
  109. Swartz, H.M. and Timmins, G.S. (2000) In: Rhodes, C.J., ed., The metabolism of nitroxides in cells and tissues. Toxicology of the human environment: the critical role of free radicals. Taylor & Francis Inc., London, New York, pp. 91-111.Google Scholar
  110. Takeshita, K., Hamada, A. and Utsumi, H. (1999) Mechanisms related to reduction of radical in mouse lung using an L-band ESR spectrometer. Free Radic. Biol. Med. 26(7-8): 951-60.CrossRefGoogle Scholar
  111. Velan, S.S., Spencer, R.G., Zweier, J.L. and Kuppusamy, P. (2000) Electron paramagnetic resonance oxygen mapping (EPROM): direct visualization of oxygen concentration in tissue. Magn. Reson. Med. 43(6): 804-9.CrossRefGoogle Scholar
  112. Voinov, M.A., Polienko, J.F., Schanding, T., Bobko, A.A., Khramtsov, V.V., Gatilov, Y.V., Rybalova, T.V., Smirnov, A.I. and Grigor’ev, I.A. (2005) Synthesis, structure and X-band (9.5 GHz) characterization of the new series of pH-sensitive probes: N-Ndisubstituted 4-amino-2,2,5,5-tetramethyl-3-imidazoline 1 Oxyls. J. Org. Chem. 70: 9702-9711.CrossRefGoogle Scholar
  113. Volodarsky, L.B., Reznikov, V.A. and Ovcharenko, V.I. (1994) Synthetic chemistry of stable nitroxides. CRC Press, Boca Raton, Fl.Google Scholar
  114. Weiner, L.M., Hu, H. and Swartz, H.M. (1991) EPR method for the measurement of cellular sulfhydryl groups. FEBS Lett. 290(1-2): 243-6.CrossRefGoogle Scholar
  115. Woldman, Y., Khramtsov, V.V., Grigor’ev, I.A., Kiriljuk, I.A. and Utepbergenov, D.I. (1994) Spin trapping of nitric oxide by nitronylnitroxides: measurement of the activity of no synthase from rat cerebellum. Biochem. Biophys. Res. Commun. 202(1): 195-203.CrossRefGoogle Scholar
  116. Yamada, K., Inoue, D., Matsumoto, S. and Utsumi, H. (2004) In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes. Antioxid. Redox Signal. 6(3): 605-11.CrossRefGoogle Scholar
  117. Yelinova, V., Glazachev, Y., Khramtsov, V., Kudryashova, L., Rykova, V. and Salganik, R. (1996) Studies of human and rat blood under oxidative stress: changes in plasma thiol level, antioxidant enzyme activity, protein carbonyl content, and fluidity of erythrocyte membrane. Biochem. Biophys. Res. Commun. 221(2): 300-3.CrossRefGoogle Scholar
  118. Yelinova, V.I., Khramtsov, V.V. and Markel, A.L. (1999) Manifestation of oxidative stress in the pathogenesis of arterial hypertension in ISIAH rats. Biochem. Biophys. Res. Commun. 263 (2): 450-3.CrossRefGoogle Scholar
  119. Zweier, J.L. and Kuppusamy, P. (1988) Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc. Natl. Acad. Sci. USA 85(15): 5703-7.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Valery V. Khramtsov
    • 1
  1. 1.Division of Pulmonary, Critical Care & Sleep MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations