Skip to main content

Geologic Effects of Large Terrestrial Impact Crater Formation

  • Chapter
Catastrophic Events Caused by Cosmic Objects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov O, Kring DA (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. J Geophys Res (Planets) 109:E10007

    Article  ADS  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108

    Article  ADS  Google Scholar 

  • Amsden AA, Ruppel HM, Hirt CW (1980) SALE: A Simplified ALE computer program for fluid flow at all speeds. Los Alamos Laboratory Report LA-8095, Los Alamos, NM, p 101

    Google Scholar 

  • Ariskin AA, Deutsch A, Ostermann M (1999) Sudbury igneous complex: simulating phase equilibria and in situ differentiation for two proposed parental magmas. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America, Special Paper 339, Boulder, pp 373–387

    Chapter  Google Scholar 

  • Bottomley R, Grieve RAF, York D, Masaitis V (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388:365–368

    Article  ADS  Google Scholar 

  • Bralower TJ, Paull CK, Leckie RM (1998) The cretaceous-tertiary boundary cocktail: Chicxulub impact triggers margin collapse. Geology 26(4):331–334

    Article  ADS  Google Scholar 

  • Christeson GL, Nakamura Y, Buffler RT et al (2001) Deep crustal structure of the Chicxulub impact crater. J Geophys Res 106:21751–21770

    Article  ADS  Google Scholar 

  • Dahlman O, Israelson H (1977) Monitoring underground nuclear explosions. Elsevier Science, New York, p 440

    Google Scholar 

  • Deep Drilling in the Impact Structure: Puchezh-Katunki (1999) In: Masaitis VL, Pevzner LA (eds) VSEGEI, St. Petersburg, p 392 (in Russian)

    Google Scholar 

  • Deutsch A, Grieve RAF (1994) The Sudbury Structure: constraints on its genesis from Lithoprobe results. Geophysi Res Lett 21:963–966

    Article  ADS  Google Scholar 

  • Deutsch A, Grieve RAF, Avermann M et al (1995) The Sudbury Structure (Ontario, Canada): a tectonically deformed multi-ring impact basin. Geologische Rundschau 84(4):697–709

    Article  ADS  Google Scholar 

  • Deutsch A, Masaitis VL, Langenhorst F et al (2000) Popigai, Siberia-well preserved giant impact structure, national treasury, and world’s geological heritage. Episodes 23(1):3–11

    Google Scholar 

  • De Wit MJ, Roering C, Hart RJ et al (1992) Formation of an Archaean continent. Nature 357:553–562

    Article  ADS  Google Scholar 

  • Dienes JK, Walsh JM (1970) Theory of impact: Some general principles and the method of Eulerian codes. In: Kinslow R (ed) High-velocity impact phenomena. Academic Press, New York, pp 46–104

    Google Scholar 

  • Donofrio RR (1998) North American impact structures hold giant field potential. Oil Gas J 69–83

    Google Scholar 

  • Doucoure CM, de Wit MJ, Mushayandebvu MF (1996) Effective elastic thickness of the continental lithosphere in South Africa. J Geophys Res 101:11291–11304

    Article  ADS  Google Scholar 

  • Dressler BO (1984) General geology of the Sudbury area. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special vol 1. Ontario Geological Survey. Ontario, pp 57–82

    Google Scholar 

  • Dutta U, Biswas N, Martirosyan A et al (2003) Estimation of earthquake source parameters and site response in Anchorage, Alaska from strong-motion network data using generalized inversion method. Physics Earth Planet Inter 137:13–29

    Article  ADS  Google Scholar 

  • Ebbing J, Janle P, Koulouris J et al (2001) 3D gravity modelling of the Chicxulub impact structure. Planet Space Sci 49:599–609

    Article  ADS  Google Scholar 

  • Foya SN, Gibson RL, Reimold WU (1999) Impact-related hydrothermal alteration of Witwaterstrand Gold Reefs in the Vredefort Dome and Witwaterstrand Goldfields, South Africa. Meteoritics Planetary Sci Suppl 34:A37

    ADS  Google Scholar 

  • Gibson RL, Jones MQW (2002) Late Archean to Paleoproterozoic geotherms in the Kaapvaal craton, South Africa: constraints on the thermal evolution of the Witwaterstrand Basin. Basin Res 14:169–181

    Article  Google Scholar 

  • Gibson RL, Reimold WU (1998) Thermal metamorphic signature of an impact event in the Vredefort Dome, South Africa. Geology 26(9):787–790

    Article  ADS  Google Scholar 

  • Gibson RL, Reimold WU (1999a) The metamorphic fingerprint of large impact events: the example of the Vredefort Dome, South Africa. Meteoritics Planetary Sci Suppl 34:A42

    ADS  Google Scholar 

  • Gibson RL, Reimold WU (1999b) The significance of the Vredefort Dome for the thermal and structural evolution of the Witwaterstrand Basin, South Africa. Mineralogy Petrology 66:5–23

    Article  ADS  Google Scholar 

  • Gibson RL, Reimold WU, Stevens G (1998) Impact-related metamorphism in the Vredefort Dome, South Africa. Lunar Planet Sci XXIX. LPSI. Houston, #1360

    Google Scholar 

  • Grajales-Nishimura JM, Cedillo-Pardo E, Rosales-Dominguez C et al (2000) Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology 28:307–310

    Article  ADS  Google Scholar 

  • Grieve RAF, Cintala MJ (1992) An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27:526–538

    ADS  Google Scholar 

  • Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20:1551–1560

    Article  ADS  Google Scholar 

  • Grieve R, Therriault A (2000) Vredefort, Sudbury, Chicxulub: three of a kind? Ann Rev Earth Planet Sci 28:305–338

    Article  ADS  Google Scholar 

  • Grieve RAF, Stöffler D, Deutsch A (1991) The Sudbury Structure: controversial or misunderstood? J Geophys Res 96 (E5), 22,753–22,764

    ADS  Google Scholar 

  • Guillou L, Mareschal J-C, Jaupart C et al (1994) Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: implications for mantle heat flow. Earth Planet Sci Lett 122:103–123

    Article  ADS  Google Scholar 

  • Gupta SC, Ahrens TJ, Yang W (1999) Shock induced vaporization of anhydrite CaSO_4 and Calcite CaCO_3. APS Meeting. Abstr #P2.01

    Google Scholar 

  • Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort Structure, South Africa. Tectonophysics 287:1–20

    Article  ADS  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA et al (1991) Chicxulub Crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula. Geology 19:867–871

    Article  ADS  Google Scholar 

  • Ivanov BA (1992) Geomechanical models of impact cratering: Puchezh-Katunki Structure. International Conference on Large Meteorite Impacts and Planetary Evolution. August 31–September 2, 1992. LPI Contribution 790. Sudbury, Ontario, Canada, pp 40

    Google Scholar 

  • Ivanov BA (1996) Spread of ejecta from impact craters and the possibility of estimating the volatile content of the Martian crust. Solar System Res 30(1):43–48 (in English)

    ADS  Google Scholar 

  • Ivanov BA (2002) Deep drilling results and numerical modeling: Puchezh-Katunki impact crater, Russia. Lunar Planet Sci XXXIII. LPSI, Houston, #1286

    Google Scholar 

  • Ivanov BA (2003a) Large impact crater modeling: Chicxulub. Third International Conference on Large Meteorite Impacts. August 5–7, 2003. Nördlingen, Germany, #4067

    Google Scholar 

  • Ivanov BA (2003b) Modification of ANEOS for rocks in compression. Impact Cratering: bridging the gap between modeling and observations. February 7–9, 2003. LPI Contribution 1155, Houston, p 40

    Google Scholar 

  • Ivanov BA (2004a) Multi-ring basins: modelling terrestrial analogs. 40th Vernadsky/Brown Microsymposium on Comparative Planetology. October 11–13, 2004. Vernadsky Inst, Moscow, Russia. CD ROM, #30

    Google Scholar 

  • Ivanov BA (2004b) Heating of the lithosphere during meteorite cratering. Solar System Res 38:266–279

    Article  ADS  Google Scholar 

  • Ivanov BA (2005) Numerical modeling of the largest terrestrial meteorite craters. Solar System Res 39(5):381–409

    Article  ADS  Google Scholar 

  • Ivanov BA, Deutsch A (1999) Sudbury impact event: cratering mechanics and thermal history. In: Dressler B, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America, Special Paper 339. Boulder, pp 389–397

    Chapter  Google Scholar 

  • Ivanov BA, Petaev MI (1992) Mass and impact velocity of the meteorite formed the Sterlitamak crater in 1990. Lunar Planet Sci Conf XXIII. Houston, pp 573–574

    Google Scholar 

  • Ivanov BA, Basilevsky AT, Neukum G (1997) Atmospheric entry of large meteoroids: implication to Titan. Planet Space Sci 45(8):993–1007

    Article  ADS  Google Scholar 

  • Ivanov BA, Badukov DD, Yakovlev OI et al (1996a) Degassing of sedimentary rocks due to Chicxulub impact: hydrocode and physical simulations. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes. Geological Society of America, Special Paper 307, pp 125–139

    Google Scholar 

  • Ivanov BA, Kocharyan GG, Kostuchenko VN et al (1996b) Puchezh-Katunki impact crater: preliminary data on recovered core block structure. Lunar Planet Sci XXVII. LPSI, Houston, pp 589–590

    Google Scholar 

  • Ivanov BA, Langenhorst F, Deutsch A et al (2004) Anhydrite EOS and phase diagram in relation to shock decomposition. Lunar Planet Sci XXXV. LPSI, Houston, #1489

    Google Scholar 

  • James DE, Fouch MJ, VanDecar JC et al (2001) Tectospheric structure beneath southern Africa. Geophys Res Lett 28(13):2485–2488

    Article  ADS  Google Scholar 

  • Jaupart C, Mareschal JC (1999) The thermal structure and thickness of continental roots. Lithos 48: 93–114

    Article  ADS  Google Scholar 

  • Kenkmann T, Ivanov B (2006) Target delamination by spallation and ejecta dragging: an example from the Ries crater’s periphery. Earth Planet Sci Lett 252(1–2):15–29

    Google Scholar 

  • Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb Zircon and Baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special Volume 1, Ontario Geological Survey, Ontario, pp 431–446

    Google Scholar 

  • Lana C, Gibson RL, Reimold WU (2003b) Impact tectonics in the core of the Vredefort dome, South Africa: implications for central uplift formation in very large impact structures. Meteoritics Planetary Sci 38:1093–1107

    Article  ADS  Google Scholar 

  • Lana C, Gibson RL, Kisters AFM et al (2003a) Archean crustal structure of the Kaapvaal craton, South Africa—evidence from the Vredefort dome. Earth Planet Sci Lett 206:133–144

    Google Scholar 

  • Lana C, Reimold WU, Gibson RL et al (2004) Nature of the Archean midcrust in the core of the Vredefort dome, Central Kaapvaal Craton, South Africa 1. Geochimica et Cosmochimica Acta 68:623–642

    Article  ADS  Google Scholar 

  • Landau LD, Lifshits EM (1958) Statistical physics. Pergamon Press, London, p 484

    MATH  Google Scholar 

  • Langenhorst F, Deutsch A, Hornemann U et al (2003) On the shock behaviour of anhydrite: experimental results and natural observations. Lunar Planet Sci XXXIV. LPSI, Houston. #1638

    Google Scholar 

  • Masaitis VL (1994) Impactites from Popigai crater. In: Grieve RAF, Sharpton VL, Dressler BO (eds) Large meteorite impacts and planetary evolution. Geological Society of America, Special Paper, 293, pp 153–162

    Google Scholar 

  • Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Meteoritics Planetary Sci 33:349–359

    Article  ADS  Google Scholar 

  • Masaitis VL, Raikhlin AI (1986) The Popigai crater formed by the impact of an ordinary chondrite. Doklady Akademii Nauk SSSR 286:1476–1478 (in Russian)

    ADS  Google Scholar 

  • Masaitis VL, Mashchak MS, Naumov MV (2003) Original diameter and depth of erosion of the Popigai impact crater, Russia. Third International Conference on Large Meteorite Impacts. August 5–7, 2003. Nördlingen, Germany, #4039

    Google Scholar 

  • Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) The Popigai meteor crater. Nauka Press, Moscow, p 124 (in Russian)

    Google Scholar 

  • Masaitis VL, Danilin AN, Mashchak MS et al (1980) The geology of astroblemes. Nedra Press, Leningrad, Russia, p 231 (in Russian)

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process (Oxford Monographs on Geology and Geophysics, No. 11). Clarendon Press, New York, p 245

    Google Scholar 

  • Melosh HJ (2000) A New and improved equation of state for impact studies. Lunar Planet Sci XXXI. LPSI, Houston. #1903

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–415

    Article  ADS  Google Scholar 

  • Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts—hydrocode simulations of laboratory impact. J Geophys Res 97(E9):14,735–14,759

    Google Scholar 

  • Milkereit B, White DJ, Green AG (1994b) Towards an improved seismic imaging technique for crustal structures: the Lithoprobe Sudbury experiment. Geophys Res Lett 21:927–930

    Article  ADS  Google Scholar 

  • Milkereit B, Green A, Wu J et al (1994a) Integrated seismic and bore hole geophysical study of the Sudbury Igneous Complex. Geophys Res Lett 21:931–934

    Article  ADS  Google Scholar 

  • Moralev VM (ed) (1986) Structure of the terrestrial crust of the Anabar Shield. Nauka, Moscow, p 198 (in Russian)

    Google Scholar 

  • Morgan JV, Warner MR, Chicxulub Working Group et al (1997) Size and morphology of the Chicxulub impact crater. Nature 390(6659):472–476

    Article  ADS  Google Scholar 

  • Morgan JV, Warner MR, Collins GS et al (2000) Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet Sci Lett 183:347–354

    Article  ADS  Google Scholar 

  • Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291(5503):465–468

    Article  ADS  Google Scholar 

  • Naldrett AJ, Hewins RH (1984) The main mass of the Sudbury igneous complex. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special Volume 1, Ontario Geological Survey, Ontario, pp 235–251

    Google Scholar 

  • Nguuri TK, Gore J, James DE et al (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophys Res Lett 28(13):2502–2504

    Article  ADS  Google Scholar 

  • Papadopoulos GA, Plessa A (2000) Magnitude-distance relations for earthquake-induced landslides in Greece. Engineering Geology 58(3–4):377–386

    Article  Google Scholar 

  • Petaev MI, Kisarev Yu.L, Mustafin Sh.A et al (1991) Meteorite Sterlitamak—A new crater-forming fall. Lunar Planet Sci Conf XXII. Houston, pp 1059–1060

    Google Scholar 

  • Pierazzo E, Hahmann AN, Sloan L (2003) Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology 3:99–118

    Article  ADS  Google Scholar 

  • Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103:28607–28625

    Article  ADS  Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact event. Earth Planet Sci Lett 165:163–176

    Article  ADS  Google Scholar 

  • Pierazzo E, Vickery, AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127:408–422

    Article  ADS  Google Scholar 

  • Pike RJ (1980) Control of crater morphology by gravity and target type - Mars, earth, moon. Lunar Planet Science Conference XI. Pergamon Press, New York, pp 2159–2189

    Google Scholar 

  • Pilkington M, Hildebrand AR (2000) Three-dimensional magnetic imaging of the Chicxulub Crater. J Geophys Res 105:23479–23492

    Article  ADS  Google Scholar 

  • Pope KO, Baines KH, Ocampo AC et al (1994) Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet Sci Lett 128:719–725

    Article  ADS  Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102(E9):21645–21664

    Article  ADS  Google Scholar 

  • Reimold WU, Gibson RL (1996) Geology and evolution of the Vredefort impact structure, South Africa. J. African Earth Sci 23(2):125–162

    Article  ADS  Google Scholar 

  • Ricoy V (2003) The Cantarell Breccia System, Southern Gulf of Mexico: Structural evolution and support for an origin related to the Chicxulub meteorite impact. EGS-AGU-EUG Joint Assembly, abstracts from the meeting held in Nice, France, 6–11 April 2003, #13339

    Google Scholar 

  • Roest WR, Pilkington M (1994) Restoring post-impact deformation at Sudbury: a circular argument. Geophys Res Lett 21:959–962

    Article  ADS  Google Scholar 

  • Rosen OM, Bibikova EV, Zhuravlev AB (1991) Early crust of the Anabar Shield: age and formation models. Early Earth’s crust: the composition and age. Mergasov GG (ed) Nauka Press, Moscow, pp 199–244 (in Russian)

    Google Scholar 

  • Rosen OM, Condie KC, Natapov LM et al (1994) Archean and early Proterozoic evolution of the Siberian craton: a preliminary assessment. Developments in Precambrian Geology 11 Windley BF (ed) Elsevier, Amsterdam, pp 411–459

    Google Scholar 

  • Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Engng 5:543–560

    Article  ADS  Google Scholar 

  • Shanks WS, Schwerdtner WM (1991) Crude quantitative estimates of the original northwest-southwest dimension of the Sudbury Structure, south central Canadian shield. Can J Earth Sci 28:1677–1686

    Article  Google Scholar 

  • Spray JG, Butler RF, Thomson LM (2004) Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modeling. MAPS 31(2):287–301

    Google Scholar 

  • Stevens G, Armstrong RA, Gibson RL (1999) Pre- and postimpact metamorphism in the core of the Vredefort Dome: clues to crustal response at a massive meteorite strike. Meteoritics Planetary Sci Suppl 34:A112

    ADS  Google Scholar 

  • Stöffler D, Langenhorst F, (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    ADS  Google Scholar 

  • Stöffler D, Artemieva NA, Ivanov BA et al (2004) Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteoritics Planetary Sci 39(7):1035–1067

    Article  ADS  Google Scholar 

  • Swisher CC, Grajales-Nishimura JM, Montanari A et al (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub Crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958

    Article  ADS  Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) Original size of the Vredefort Structure: implications for the geological evolution of the Witwaterstrand Basin. Meteoritics Planetary Sci 32:71–77

    Article  ADS  Google Scholar 

  • Thompson SL, Lauson HS (1972) Improvements in the Chart D radiation-hydrodynamic CODE III: revised analytic equations of state. Report SC-RR-71 0714. Sandia National Laboratory, Albuquerque, p 119

    Google Scholar 

  • Turtle EP, Pierazzo E (1998) Constraints on the size of the Vredefort impact crater from numerical modeling. Meteoritics Planetary Sci 33:483–490

    Article  ADS  Google Scholar 

  • Turtle EP, Pierazzo E, O’Brien DP (2003) Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteoritics Planetary Sci 38:293–303

    Article  ADS  Google Scholar 

  • Wieland F, Reimold WU (2003) Field and laboratory studies on shatter cones in the Vredefort Dome, South Africa, and their genesis. Meteoritics Planetary Sci Suppl 38:A5016

    ADS  Google Scholar 

  • Wieland F, Gibson RL, Reimold WU et al (2003) Structural evolution of the central uplift of the Vredefort Impact Structure, South Africa. Meteoritics Planetary Sci Suppl 38:A5027

    ADS  Google Scholar 

  • Wu J, Milkereit B, Boerner DE (1995) Seismic imaging of the enigmatic Sudbury Structure. J Geophys Res 100:4117–4130

    Article  ADS  Google Scholar 

  • Wünnemann K Ivanov BA (2003) Numerical modelling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planet Space Sci 51:831–845

    Article  ADS  Google Scholar 

  • Zel’dovitch Ya.B, Raiser Yu.P (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York

    Google Scholar 

  • Zharkov VN, Kalinin VA (1971) Equations of state for solids at high pressures and temperatures. Consultants Bureau, New York, p 257

    Google Scholar 

  • Zieg MJ, Marsh BD (2005) The Sudbury igneous complex: viscous emulsion differentiation of a superheated impact melt sheet. GSA Bulletin 117:1427–1450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 springer

About this chapter

Cite this chapter

Ivanov, B. (2008). Geologic Effects of Large Terrestrial Impact Crater Formation. In: Adushkin, V., Nemchinov, I. (eds) Catastrophic Events Caused by Cosmic Objects. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6452-4_5

Download citation

Publish with us

Policies and ethics