Advertisement

Geologic Effects of Large Terrestrial Impact Crater Formation

  • Boris Ivanov

Keywords

Impact Crater Crater Formation Central Uplift Crater Floor Chicxulub Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov O, Kring DA (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. J Geophys Res (Planets) 109:E10007CrossRefADSGoogle Scholar
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108CrossRefADSGoogle Scholar
  3. Amsden AA, Ruppel HM, Hirt CW (1980) SALE: A Simplified ALE computer program for fluid flow at all speeds. Los Alamos Laboratory Report LA-8095, Los Alamos, NM, p 101Google Scholar
  4. Ariskin AA, Deutsch A, Ostermann M (1999) Sudbury igneous complex: simulating phase equilibria and in situ differentiation for two proposed parental magmas. In: Dressler BO, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America, Special Paper 339, Boulder, pp 373–387CrossRefGoogle Scholar
  5. Bottomley R, Grieve RAF, York D, Masaitis V (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388:365–368CrossRefADSGoogle Scholar
  6. Bralower TJ, Paull CK, Leckie RM (1998) The cretaceous-tertiary boundary cocktail: Chicxulub impact triggers margin collapse. Geology 26(4):331–334CrossRefADSGoogle Scholar
  7. Christeson GL, Nakamura Y, Buffler RT et al (2001) Deep crustal structure of the Chicxulub impact crater. J Geophys Res 106:21751–21770CrossRefADSGoogle Scholar
  8. Dahlman O, Israelson H (1977) Monitoring underground nuclear explosions. Elsevier Science, New York, p 440Google Scholar
  9. Deep Drilling in the Impact Structure: Puchezh-Katunki (1999) In: Masaitis VL, Pevzner LA (eds) VSEGEI, St. Petersburg, p 392 (in Russian)Google Scholar
  10. Deutsch A, Grieve RAF (1994) The Sudbury Structure: constraints on its genesis from Lithoprobe results. Geophysi Res Lett 21:963–966CrossRefADSGoogle Scholar
  11. Deutsch A, Grieve RAF, Avermann M et al (1995) The Sudbury Structure (Ontario, Canada): a tectonically deformed multi-ring impact basin. Geologische Rundschau 84(4):697–709CrossRefADSGoogle Scholar
  12. Deutsch A, Masaitis VL, Langenhorst F et al (2000) Popigai, Siberia-well preserved giant impact structure, national treasury, and world’s geological heritage. Episodes 23(1):3–11Google Scholar
  13. De Wit MJ, Roering C, Hart RJ et al (1992) Formation of an Archaean continent. Nature 357:553–562CrossRefADSGoogle Scholar
  14. Dienes JK, Walsh JM (1970) Theory of impact: Some general principles and the method of Eulerian codes. In: Kinslow R (ed) High-velocity impact phenomena. Academic Press, New York, pp 46–104Google Scholar
  15. Donofrio RR (1998) North American impact structures hold giant field potential. Oil Gas J 69–83Google Scholar
  16. Doucoure CM, de Wit MJ, Mushayandebvu MF (1996) Effective elastic thickness of the continental lithosphere in South Africa. J Geophys Res 101:11291–11304CrossRefADSGoogle Scholar
  17. Dressler BO (1984) General geology of the Sudbury area. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special vol 1. Ontario Geological Survey. Ontario, pp 57–82Google Scholar
  18. Dutta U, Biswas N, Martirosyan A et al (2003) Estimation of earthquake source parameters and site response in Anchorage, Alaska from strong-motion network data using generalized inversion method. Physics Earth Planet Inter 137:13–29CrossRefADSGoogle Scholar
  19. Ebbing J, Janle P, Koulouris J et al (2001) 3D gravity modelling of the Chicxulub impact structure. Planet Space Sci 49:599–609CrossRefADSGoogle Scholar
  20. Foya SN, Gibson RL, Reimold WU (1999) Impact-related hydrothermal alteration of Witwaterstrand Gold Reefs in the Vredefort Dome and Witwaterstrand Goldfields, South Africa. Meteoritics Planetary Sci Suppl 34:A37ADSGoogle Scholar
  21. Gibson RL, Jones MQW (2002) Late Archean to Paleoproterozoic geotherms in the Kaapvaal craton, South Africa: constraints on the thermal evolution of the Witwaterstrand Basin. Basin Res 14:169–181CrossRefGoogle Scholar
  22. Gibson RL, Reimold WU (1998) Thermal metamorphic signature of an impact event in the Vredefort Dome, South Africa. Geology 26(9):787–790CrossRefADSGoogle Scholar
  23. Gibson RL, Reimold WU (1999a) The metamorphic fingerprint of large impact events: the example of the Vredefort Dome, South Africa. Meteoritics Planetary Sci Suppl 34:A42ADSGoogle Scholar
  24. Gibson RL, Reimold WU (1999b) The significance of the Vredefort Dome for the thermal and structural evolution of the Witwaterstrand Basin, South Africa. Mineralogy Petrology 66:5–23CrossRefADSGoogle Scholar
  25. Gibson RL, Reimold WU, Stevens G (1998) Impact-related metamorphism in the Vredefort Dome, South Africa. Lunar Planet Sci XXIX. LPSI. Houston, #1360Google Scholar
  26. Grajales-Nishimura JM, Cedillo-Pardo E, Rosales-Dominguez C et al (2000) Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology 28:307–310CrossRefADSGoogle Scholar
  27. Grieve RAF, Cintala MJ (1992) An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27:526–538ADSGoogle Scholar
  28. Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20:1551–1560CrossRefADSGoogle Scholar
  29. Grieve R, Therriault A (2000) Vredefort, Sudbury, Chicxulub: three of a kind? Ann Rev Earth Planet Sci 28:305–338CrossRefADSGoogle Scholar
  30. Grieve RAF, Stöffler D, Deutsch A (1991) The Sudbury Structure: controversial or misunderstood? J Geophys Res 96 (E5), 22,753–22,764ADSGoogle Scholar
  31. Guillou L, Mareschal J-C, Jaupart C et al (1994) Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: implications for mantle heat flow. Earth Planet Sci Lett 122:103–123CrossRefADSGoogle Scholar
  32. Gupta SC, Ahrens TJ, Yang W (1999) Shock induced vaporization of anhydrite CaSO_4 and Calcite CaCO_3. APS Meeting. Abstr #P2.01Google Scholar
  33. Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort Structure, South Africa. Tectonophysics 287:1–20CrossRefADSGoogle Scholar
  34. Hildebrand AR, Penfield GT, Kring DA et al (1991) Chicxulub Crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula. Geology 19:867–871CrossRefADSGoogle Scholar
  35. Ivanov BA (1992) Geomechanical models of impact cratering: Puchezh-Katunki Structure. International Conference on Large Meteorite Impacts and Planetary Evolution. August 31–September 2, 1992. LPI Contribution 790. Sudbury, Ontario, Canada, pp 40Google Scholar
  36. Ivanov BA (1996) Spread of ejecta from impact craters and the possibility of estimating the volatile content of the Martian crust. Solar System Res 30(1):43–48 (in English)ADSGoogle Scholar
  37. Ivanov BA (2002) Deep drilling results and numerical modeling: Puchezh-Katunki impact crater, Russia. Lunar Planet Sci XXXIII. LPSI, Houston, #1286Google Scholar
  38. Ivanov BA (2003a) Large impact crater modeling: Chicxulub. Third International Conference on Large Meteorite Impacts. August 5–7, 2003. Nördlingen, Germany, #4067Google Scholar
  39. Ivanov BA (2003b) Modification of ANEOS for rocks in compression. Impact Cratering: bridging the gap between modeling and observations. February 7–9, 2003. LPI Contribution 1155, Houston, p 40Google Scholar
  40. Ivanov BA (2004a) Multi-ring basins: modelling terrestrial analogs. 40th Vernadsky/Brown Microsymposium on Comparative Planetology. October 11–13, 2004. Vernadsky Inst, Moscow, Russia. CD ROM, #30Google Scholar
  41. Ivanov BA (2004b) Heating of the lithosphere during meteorite cratering. Solar System Res 38:266–279CrossRefADSGoogle Scholar
  42. Ivanov BA (2005) Numerical modeling of the largest terrestrial meteorite craters. Solar System Res 39(5):381–409CrossRefADSGoogle Scholar
  43. Ivanov BA, Deutsch A (1999) Sudbury impact event: cratering mechanics and thermal history. In: Dressler B, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America, Special Paper 339. Boulder, pp 389–397CrossRefGoogle Scholar
  44. Ivanov BA, Petaev MI (1992) Mass and impact velocity of the meteorite formed the Sterlitamak crater in 1990. Lunar Planet Sci Conf XXIII. Houston, pp 573–574Google Scholar
  45. Ivanov BA, Basilevsky AT, Neukum G (1997) Atmospheric entry of large meteoroids: implication to Titan. Planet Space Sci 45(8):993–1007CrossRefADSGoogle Scholar
  46. Ivanov BA, Badukov DD, Yakovlev OI et al (1996a) Degassing of sedimentary rocks due to Chicxulub impact: hydrocode and physical simulations. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes. Geological Society of America, Special Paper 307, pp 125–139Google Scholar
  47. Ivanov BA, Kocharyan GG, Kostuchenko VN et al (1996b) Puchezh-Katunki impact crater: preliminary data on recovered core block structure. Lunar Planet Sci XXVII. LPSI, Houston, pp 589–590Google Scholar
  48. Ivanov BA, Langenhorst F, Deutsch A et al (2004) Anhydrite EOS and phase diagram in relation to shock decomposition. Lunar Planet Sci XXXV. LPSI, Houston, #1489Google Scholar
  49. James DE, Fouch MJ, VanDecar JC et al (2001) Tectospheric structure beneath southern Africa. Geophys Res Lett 28(13):2485–2488CrossRefADSGoogle Scholar
  50. Jaupart C, Mareschal JC (1999) The thermal structure and thickness of continental roots. Lithos 48: 93–114CrossRefADSGoogle Scholar
  51. Kenkmann T, Ivanov B (2006) Target delamination by spallation and ejecta dragging: an example from the Ries crater’s periphery. Earth Planet Sci Lett 252(1–2):15–29Google Scholar
  52. Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb Zircon and Baddeleyite ages for the Sudbury area. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special Volume 1, Ontario Geological Survey, Ontario, pp 431–446Google Scholar
  53. Lana C, Gibson RL, Reimold WU (2003b) Impact tectonics in the core of the Vredefort dome, South Africa: implications for central uplift formation in very large impact structures. Meteoritics Planetary Sci 38:1093–1107ADSCrossRefGoogle Scholar
  54. Lana C, Gibson RL, Kisters AFM et al (2003a) Archean crustal structure of the Kaapvaal craton, South Africa—evidence from the Vredefort dome. Earth Planet Sci Lett 206:133–144Google Scholar
  55. Lana C, Reimold WU, Gibson RL et al (2004) Nature of the Archean midcrust in the core of the Vredefort dome, Central Kaapvaal Craton, South Africa 1. Geochimica et Cosmochimica Acta 68:623–642CrossRefADSGoogle Scholar
  56. Landau LD, Lifshits EM (1958) Statistical physics. Pergamon Press, London, p 484MATHGoogle Scholar
  57. Langenhorst F, Deutsch A, Hornemann U et al (2003) On the shock behaviour of anhydrite: experimental results and natural observations. Lunar Planet Sci XXXIV. LPSI, Houston. #1638Google Scholar
  58. Masaitis VL (1994) Impactites from Popigai crater. In: Grieve RAF, Sharpton VL, Dressler BO (eds) Large meteorite impacts and planetary evolution. Geological Society of America, Special Paper, 293, pp 153–162Google Scholar
  59. Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Meteoritics Planetary Sci 33:349–359ADSCrossRefGoogle Scholar
  60. Masaitis VL, Raikhlin AI (1986) The Popigai crater formed by the impact of an ordinary chondrite. Doklady Akademii Nauk SSSR 286:1476–1478 (in Russian)ADSGoogle Scholar
  61. Masaitis VL, Mashchak MS, Naumov MV (2003) Original diameter and depth of erosion of the Popigai impact crater, Russia. Third International Conference on Large Meteorite Impacts. August 5–7, 2003. Nördlingen, Germany, #4039Google Scholar
  62. Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) The Popigai meteor crater. Nauka Press, Moscow, p 124 (in Russian)Google Scholar
  63. Masaitis VL, Danilin AN, Mashchak MS et al (1980) The geology of astroblemes. Nedra Press, Leningrad, Russia, p 231 (in Russian)Google Scholar
  64. Melosh HJ (1989) Impact cratering: a geologic process (Oxford Monographs on Geology and Geophysics, No. 11). Clarendon Press, New York, p 245Google Scholar
  65. Melosh HJ (2000) A New and improved equation of state for impact studies. Lunar Planet Sci XXXI. LPSI, Houston. #1903Google Scholar
  66. Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–415CrossRefADSGoogle Scholar
  67. Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts—hydrocode simulations of laboratory impact. J Geophys Res 97(E9):14,735–14,759Google Scholar
  68. Milkereit B, White DJ, Green AG (1994b) Towards an improved seismic imaging technique for crustal structures: the Lithoprobe Sudbury experiment. Geophys Res Lett 21:927–930CrossRefADSGoogle Scholar
  69. Milkereit B, Green A, Wu J et al (1994a) Integrated seismic and bore hole geophysical study of the Sudbury Igneous Complex. Geophys Res Lett 21:931–934CrossRefADSGoogle Scholar
  70. Moralev VM (ed) (1986) Structure of the terrestrial crust of the Anabar Shield. Nauka, Moscow, p 198 (in Russian)Google Scholar
  71. Morgan JV, Warner MR, Chicxulub Working Group et al (1997) Size and morphology of the Chicxulub impact crater. Nature 390(6659):472–476CrossRefADSGoogle Scholar
  72. Morgan JV, Warner MR, Collins GS et al (2000) Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet Sci Lett 183:347–354CrossRefADSGoogle Scholar
  73. Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291(5503):465–468CrossRefADSGoogle Scholar
  74. Naldrett AJ, Hewins RH (1984) The main mass of the Sudbury igneous complex. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Special Volume 1, Ontario Geological Survey, Ontario, pp 235–251Google Scholar
  75. Nguuri TK, Gore J, James DE et al (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophys Res Lett 28(13):2502–2504CrossRefADSGoogle Scholar
  76. Papadopoulos GA, Plessa A (2000) Magnitude-distance relations for earthquake-induced landslides in Greece. Engineering Geology 58(3–4):377–386CrossRefGoogle Scholar
  77. Petaev MI, Kisarev Yu.L, Mustafin Sh.A et al (1991) Meteorite Sterlitamak—A new crater-forming fall. Lunar Planet Sci Conf XXII. Houston, pp 1059–1060Google Scholar
  78. Pierazzo E, Hahmann AN, Sloan L (2003) Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology 3:99–118CrossRefADSGoogle Scholar
  79. Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103:28607–28625CrossRefADSGoogle Scholar
  80. Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact event. Earth Planet Sci Lett 165:163–176CrossRefADSGoogle Scholar
  81. Pierazzo E, Vickery, AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127:408–422CrossRefADSGoogle Scholar
  82. Pike RJ (1980) Control of crater morphology by gravity and target type - Mars, earth, moon. Lunar Planet Science Conference XI. Pergamon Press, New York, pp 2159–2189Google Scholar
  83. Pilkington M, Hildebrand AR (2000) Three-dimensional magnetic imaging of the Chicxulub Crater. J Geophys Res 105:23479–23492CrossRefADSGoogle Scholar
  84. Pope KO, Baines KH, Ocampo AC et al (1994) Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet Sci Lett 128:719–725CrossRefADSGoogle Scholar
  85. Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102(E9):21645–21664CrossRefADSGoogle Scholar
  86. Reimold WU, Gibson RL (1996) Geology and evolution of the Vredefort impact structure, South Africa. J. African Earth Sci 23(2):125–162CrossRefADSGoogle Scholar
  87. Ricoy V (2003) The Cantarell Breccia System, Southern Gulf of Mexico: Structural evolution and support for an origin related to the Chicxulub meteorite impact. EGS-AGU-EUG Joint Assembly, abstracts from the meeting held in Nice, France, 6–11 April 2003, #13339Google Scholar
  88. Roest WR, Pilkington M (1994) Restoring post-impact deformation at Sudbury: a circular argument. Geophys Res Lett 21:959–962CrossRefADSGoogle Scholar
  89. Rosen OM, Bibikova EV, Zhuravlev AB (1991) Early crust of the Anabar Shield: age and formation models. Early Earth’s crust: the composition and age. Mergasov GG (ed) Nauka Press, Moscow, pp 199–244 (in Russian)Google Scholar
  90. Rosen OM, Condie KC, Natapov LM et al (1994) Archean and early Proterozoic evolution of the Siberian craton: a preliminary assessment. Developments in Precambrian Geology 11 Windley BF (ed) Elsevier, Amsterdam, pp 411–459Google Scholar
  91. Schmidt RM, Housen KR (1987) Some recent advances in the scaling of impact and explosion cratering. Int J Impact Engng 5:543–560CrossRefADSGoogle Scholar
  92. Shanks WS, Schwerdtner WM (1991) Crude quantitative estimates of the original northwest-southwest dimension of the Sudbury Structure, south central Canadian shield. Can J Earth Sci 28:1677–1686CrossRefGoogle Scholar
  93. Spray JG, Butler RF, Thomson LM (2004) Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modeling. MAPS 31(2):287–301Google Scholar
  94. Stevens G, Armstrong RA, Gibson RL (1999) Pre- and postimpact metamorphism in the core of the Vredefort Dome: clues to crustal response at a massive meteorite strike. Meteoritics Planetary Sci Suppl 34:A112ADSGoogle Scholar
  95. Stöffler D, Langenhorst F, (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181ADSGoogle Scholar
  96. Stöffler D, Artemieva NA, Ivanov BA et al (2004) Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteoritics Planetary Sci 39(7):1035–1067ADSCrossRefGoogle Scholar
  97. Swisher CC, Grajales-Nishimura JM, Montanari A et al (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub Crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958CrossRefADSGoogle Scholar
  98. Therriault AM, Grieve RAF, Reimold WU (1997) Original size of the Vredefort Structure: implications for the geological evolution of the Witwaterstrand Basin. Meteoritics Planetary Sci 32:71–77ADSCrossRefGoogle Scholar
  99. Thompson SL, Lauson HS (1972) Improvements in the Chart D radiation-hydrodynamic CODE III: revised analytic equations of state. Report SC-RR-71 0714. Sandia National Laboratory, Albuquerque, p 119Google Scholar
  100. Turtle EP, Pierazzo E (1998) Constraints on the size of the Vredefort impact crater from numerical modeling. Meteoritics Planetary Sci 33:483–490ADSCrossRefGoogle Scholar
  101. Turtle EP, Pierazzo E, O’Brien DP (2003) Numerical modeling of impact heating and cooling of the Vredefort impact structure. Meteoritics Planetary Sci 38:293–303ADSCrossRefGoogle Scholar
  102. Wieland F, Reimold WU (2003) Field and laboratory studies on shatter cones in the Vredefort Dome, South Africa, and their genesis. Meteoritics Planetary Sci Suppl 38:A5016ADSGoogle Scholar
  103. Wieland F, Gibson RL, Reimold WU et al (2003) Structural evolution of the central uplift of the Vredefort Impact Structure, South Africa. Meteoritics Planetary Sci Suppl 38:A5027ADSGoogle Scholar
  104. Wu J, Milkereit B, Boerner DE (1995) Seismic imaging of the enigmatic Sudbury Structure. J Geophys Res 100:4117–4130CrossRefADSGoogle Scholar
  105. Wünnemann K Ivanov BA (2003) Numerical modelling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planet Space Sci 51:831–845CrossRefADSGoogle Scholar
  106. Zel’dovitch Ya.B, Raiser Yu.P (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New YorkGoogle Scholar
  107. Zharkov VN, Kalinin VA (1971) Equations of state for solids at high pressures and temperatures. Consultants Bureau, New York, p 257Google Scholar
  108. Zieg MJ, Marsh BD (2005) The Sudbury igneous complex: viscous emulsion differentiation of a superheated impact melt sheet. GSA Bulletin 117:1427–1450CrossRefGoogle Scholar

Copyright information

© springer 2008

Authors and Affiliations

  • Boris Ivanov
    • 1
  1. 1.Institute for Dynamics of GeospheresRussian Academy of SciencesMoscow 119334Russia

Personalised recommendations